27 research outputs found

    Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient

    Get PDF
    ZnO nanowires have been successfully fabricated on Si substrate by simple thermal evaporation of Zn powder under air ambient without any catalyst. Morphology and structure analyses indicated that ZnO nanowires had high purity and perfect crystallinity. The diameter of ZnO nanowires was 40 to 100 nm, and the length was about several tens of micrometers. The prepared ZnO nanowires exhibited a hexagonal wurtzite crystal structure. The growth of the ZnO nanostructure was explained by the vapor-solid mechanism. The simplicity, low cost and fewer necessary apparatuses of the process would suit the high-throughput fabrication of ZnO nanowires. The ZnO nanowires fabricated on Si substrate are compatible with state-of-the-art semiconductor industry. They are expected to have potential applications in functional nanodevices

    Hydroxyapatite Mineralization on the Calcium Chloride Blended Polyurethane Nanofiber via Biomimetic Method

    Get PDF
    Polyurethane nanofibers containing calcium chloride (CaCl2) were prepared via an electrospinning technique for the biomedical applications. Polyurethane nanofibers with different concentration of CaCl2 were electrospun, and their bioactivity evaluation was conducted by incubating in biomimetic simulated body fluid (SBF) solution. The morphology, structure and thermal properties of the polyurethane/CaCl2 composite nanofibers were characterized by means of scanning electron microscopy (SEM), field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetry. SEM images revealed that the CaCl2 salt incorporated homogeneously to form well-oriented nanofibers with smooth surface and uniform diameters along their lengths. The SBF incubation test confirmed the formation of apatite-like materials, exhibiting enhanced bioactive behavior of the polyurethane/CaCl2 composite nanofibers. This study demonstrated that the electrospun polyurethane containing CaCl2 composite nanofibers enhanced the in vitro bioactivity and supports the growth of apatite-like materials

    Mechanical Deformation Behavior of Nonpolar GaN Thick Films by Berkovich Nanoindentation

    Get PDF
    In this study, the deformation mechanisms of nonpolar GaN thick films grown on m-sapphire by hydride vapor phase epitaxy (HVPE) are investigated using nanoindentation with a Berkovich indenter, cathodoluminescence (CL), and Raman microscopy. Results show that nonpolar GaN is more susceptible to plastic deformation and has lower hardness thanc-plane GaN. After indentation, lateral cracks emerge on the nonpolar GaN surface and preferentially propagate parallel to the orientation due to anisotropic defect-related stresses. Moreover, the quenching of CL luminescence can be observed to extend exclusively out from the center of the indentations along the orientation, a trend which is consistent with the evolution of cracks. The recrystallization process happens in the indented regions for the load of 500 mN. Raman area mapping indicates that the distribution of strain field coincides well with the profile of defect-expanded dark regions, while the enhanced compressive stress mainly concentrates in the facets of the indentation

    GaAs: micro hardness

    No full text

    Recent advances in cerium oxide-based nanocomposites in synthesis, characterization, and energy storage applications: A comprehensive review

    No full text
    Since advancements in energy conversion technologies and energy storage devices, the use of supercapacitors has become more prevalent recently. Their high energy density, consistent cycle life, and extended lifetimes of supercapacitors have been thought to be their key benefits. The development of supercapacitor technology has also been greatly aided by sustainability nanotechnology. Cerium oxide (CeO2) is a type of ceramic material that is demonstrated as having a positive electrochemical behavior among a variety of widely used materials. A prospective active material for supercapacitor applications is CeO2, together with its nanostructured composite materials, which is the subject of extensive research. Recent developments in this field necessitated the requirement to develop an alternative, thus giving rise to the supercapacitor. Supercapacitors utilize the same fundamental formulas as normal capacitors. Those characteristics enable it to behave at densities of energy and power that are higher than that of battery and ordinary capacitors, respectively. Due to their unique physicochemical characteristics, rare-earth minerals have garnered a lot of research interest as electrode materials for supercapacitor applications. Therefore, in this review, cerium composite-based electrode materials, cerium oxides and composite, ceria nano enzyme behavior, and rare earth oxide have all been covered as far as energy storage device applications are concerned
    corecore