347 research outputs found

    Temporal decorrelation of collective oscillations in neural networks with local inhibition and long-range excitation

    Full text link
    We consider two neuronal networks coupled by long-range excitatory interactions. Oscillations in the gamma frequency band are generated within each network by local inhibition. When long-range excitation is weak, these oscillations phase-lock with a phase-shift dependent on the strength of local inhibition. Increasing the strength of long-range excitation induces a transition to chaos via period-doubling or quasi-periodic scenarios. In the chaotic regime oscillatory activity undergoes fast temporal decorrelation. The generality of these dynamical properties is assessed in firing-rate models as well as in large networks of conductance-based neurons.Comment: 4 pages, 5 figures. accepted for publication in Physical Review Letter

    Collective Modes of Tri-Nuclear Molecules

    Get PDF
    A geometrical model for tri-nuclear molecules is presented. An analytical solution is obtained provided the nuclei, which are taken to be prolately deformed, are connected in line to each other. Furthermore, the tri-nuclear molecule is composed of two heavy and one light cluster, the later sandwiched between the two heavy clusters. A basis is constructed in which Hamiltonians of more general configurations can be diagonalized. In the calculation of the interaction between the clusters higher multipole deformations are taken into account, including the hexadecupole one. A repulsive nuclear core is introduced in the potential in order to insure a quasi-stable configuration of the system. The model is applied to three nuclear molecules, namely 96^{96}Sr + 10^{10}Be + 146^{146}Ba, 108^{108}Mo + 10^{10}Be + 134^{134}Te and 112^{112}Ru + 10^{10}Be + 130^{130}Sn.Comment: 24 pages, 9 figure

    A Global Potential Analysis of the 16^{16}O+28^{28}Si Reaction Using a New Type of Coupling Potential

    Full text link
    A new approach has been used to explain the experimental data for the 16^{16}O+28^{28}Si system over a wide energy range in the laboratory system from 29.0 to 142.5 MeV. A number of serious problems has continued to plague the study of this system for a couple of decades. The explanation of anomalous large angle scattering data; the reproduction of the oscillatory structure near the Coulomb barrier; the out-of-phase problem between theoretical predictions and experimental data; the consistent description of angular distributions together with excitation functions data are just some of these problems. These are long standing problems that have persisted over the years and do represent a challenge calling for a consistent framework to resolve these difficulties within a unified approach. Traditional frameworks have failed to describe these phenomena within a single model and have so far only offered different approaches where these difficulties are investigated separately from one another. The present work offers a plausible framework where all these difficulties are investigated and answered. Not only it improves the simultaneous fits to the data of these diverse observables, achieving this within a unified approach over a wide energy range, but it departs for its coupling potential from the standard formulation. This new feature is shown to improve consistently the agreement with the experimental data and has made major improvement on all the previous coupled-channels calculations for this system.Comment: 21 pages with 12 figure

    Measurement of the Pion Form Factor in the Energy Range 1.04-1.38 GeV with the CMD-2 Detector

    Full text link
    The cross section for the process e+e−→π+π−e^+e^-\to\pi^+\pi^- is measured in the c.m. energy range 1.04-1.38 GeV from 995 000 selected collinear events including 860000 e+e−e^+e^- events, 82000 μ+μ−\mu^+\mu^- events, and 33000 π+π−\pi^+\pi^- events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2-4.2 and 5-13%, respectively.Comment: 5 pages, 2 figure

    Chaotic Scattering in Heavy--Ion Reactions

    Get PDF
    We discuss the relevance of chaotic scattering in heavy--ion reactions at energies around the Coulomb barrier. A model in two and three dimensions which takes into account rotational degrees of freedom is discussed both classically and quantum-mechanically. The typical chaotic features found in this description of heavy-ion collisions are connected with the anomalous behaviour of several experimental data.Comment: 35 pages in RevTex (version 3.0) plus 27 PostScript figures obtainable by anonymous ftp from VAXFCT.CT.INFN.IT in directory kaos. Fig. 1 upon request to the authors. To be published in the October Focus issue on chaotic scattering of CHAO

    Measurement of the e+e−→K+K−π+π−e^+e^- \to K^+K^-\pi^+\pi^- cross section with the CMD-3 detector at the VEPP-2000 collider

    Get PDF
    The process e+e−→K+K−π+π−e^+e^- \to K^+K^-\pi^+\pi^- has been studied in the center-of-mass energy range from 1500 to 2000\,MeV using a data sample of 23 pb−1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+e−e^+e^- collider. Using about 24000 selected events, the e+e−→K+K−π+π−e^+e^- \to K^+K^-\pi^+\pi^- cross section has been measured with a systematic uncertainty decreasing from 11.7\% at 1500-1600\,MeV to 6.1\% above 1800\,MeV. A preliminary study of K+K−π+π−K^+K^-\pi^+\pi^- production dynamics has been performed

    Study of the process e+e−→ppˉe^+e^-\to p\bar{p} in the c.m. energy range from threshold to 2 GeV with the CMD-3 detector

    Get PDF
    Using a data sample of 6.8 pb−1^{-1} collected with the CMD-3 detector at the VEPP-2000 e+e−e^+e^- collider we select about 2700 events of the e+e−→ppˉe^+e^- \to p\bar{p} process and measure its cross section at 12 energy ponts with about 6\% systematic uncertainty. From the angular distribution of produced nucleons we obtain the ratio ∣GE/GM∣=1.49±0.23±0.30|G_{E}/G_{M}| = 1.49 \pm 0.23 \pm 0.30

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.
    • …
    corecore