2 research outputs found

    Grand unified theory constrained supersymmetry and neutrinoless double beta decay

    Get PDF
    We analyze the contributions to the neutrinoless double β\beta decay (0νββ0\nu\beta\beta-decay) coming from the Grand Unified Theory (GUT) constrained Minimal Supersymmetric Standard Model (MSSM) with trilinear R-parity breaking. We discuss the importance of two-nucleon and pion-exchange realizations of the quark-level 0νββ0\nu\beta\beta-decay transitions. In this context, the questions of reliability of the calculated relevant nuclear matrix elements within the Renormalized Quasiparticle Random Phase Approximation (pn-RQRPA) for several medium and heavy open-shell nuclei are addressed. The importance of gluino and neutralino contributions to 0νββ0\nu\beta\beta-decay is also analyzed. We review the present experiments and deduce limits on the trilinear R-parity breaking parameter λ111\lambda_{111}' from the non-observability of 0νββ0\nu\beta\beta-decay for different GUT constrained SUSY scenarios. In addition, a detailed study of limits on the MSSM parameter space coming from the BXsγB \to X_s \gamma processes by using the recent CLEO and OPAL results is performed. Some studies in respect to the future 0νββ0\nu\beta\beta-decay project GENIUS are also presented.Comment: 29 pages, 8 figure

    Neutrinoless Double Beta Decay of Ge76, Se82, Mo100 and Xe136 to excited 0^+ states

    Full text link
    The neutrinoless double beta decay transition to the first excited 0^+ collective final state is examined for A=76, 82, 100 and 136 nuclei by assuming light and heavy Majorana neutrino exchange mechanisms as well as the trilinear R-parity violating contributions. Realistic calculations of nuclear matrix elements have been performed within the renormalized quasiparticle random phase approximation. Transitions to the first excited two-quadrupole phonon 0^+ state are described within a boson expansion formalism and alternatively by using the operator recoupling method. We present the sensitivity parameters to different lepton number violating signals, which can be used in planning the neutrinoless double beta decay experiments. The half-life of neutrinoless double beta decay to the first excited state 0^+_1 is by a factor of 10 to 100 larger than that of the transition to the ground state.Comment: 31 pages, RevTex, 1 Postscript figures, to appear in Phys. Rev.
    corecore