365 research outputs found
Truncation method for Green's functions in time-dependent fields
We investigate the influence of a time dependent, homogeneous electric field
on scattering properties of non-interacting electrons in an arbitrary static
potential. We develop a method to calculate the (Keldysh) Green's function in
two complementary approaches. Starting from a plane wave basis, a formally
exact solution is given in terms of the inverse of a matrix containing
infinitely many 'photoblocks' which can be evaluated approximately by
truncation. In the exact eigenstate basis of the scattering potential, we
obtain a version of the Floquet state theory in the Green's functions language.
The formalism is checked for cases such as a simple model of a double barrier
in a strong electric field. Furthermore, an exact relation between the
inelastic scattering rate due to the microwave and the AC conductivity of the
system is derived which in particular holds near or at a metal-insulator
transition in disordered systems.Comment: to appear in Phys. Rev. B., 21 pages, 3 figures (ps-files
Spin Susceptibility of a 2D Electron System in GaAs towards the Weak Interaction Region
We determine the spin susceptibility in the weak interaction regime of
a tunable, high quality, two-dimensional electron system in a GaAs/AlGaAs
heterostructure. The band structure effects, modifying mass and g-factor, are
carefully taken into accounts since they become appreciable for the large
electron densities of the weak interaction regime. When properly normalized,
decreases monotonically from 3 to 1.1 with increasing density over our
experimental range from 0.1 to . In the high density
limit, tends correctly towards and compare well with recent
theory.Comment: Submitted to Physical Review
Gate-Controlled Electron Spin Resonance in a GaAs/AlGaAs Heterostructure
The electron spin resonance (ESR) of two-dimensional electrons is
investigated in a gated GaAs/AlGaAs heterostructure. We found that the ESR
resonance frequency can be turned by means of a gate voltage. The front and
back gates of the heterostructure produce opposite g-factor shift, suggesting
that electron g-factor is being electrostatically controlled by shifting the
equilibrium position of the electron wave function from one epitaxial layer to
another with different g-factors
Circular polarization dependent study of the microwave photoconductivity in a two-dimensional electron system
The polarization dependence of the low field microwave photoconductivity and
absorption of a two-dimensional electron system has been investigated in a
quasi-optical setup in which linear and any circular polarization can be
produced in-situ. The microwave induced resistance oscillations and the zero
resistance regions are notedly immune to the sense of circular polarization.
This observation is discrepant with a number of proposed theories. Deviations
only occur near the cyclotron resonance absorption where an unprecedented large
resistance response is observed.Comment: 5 pages, 3 figure
All-angle left-handed negative refraction in Kagome and honeycomb lattice photonic crystals
Possibilities of all-angle left-handed negative refraction in 2D honeycomb
and Kagome lattices made of dielectric rods in air are discussed for the
refractive indices 3.1 and 3.6. In contrast to triangular lattice photonic
crystals made of rods in air, both the honeycomb and Kagome lattices show
all-angle left-handed negative refraction in the case of the TM2 band for low
normalized frequencies. Certain advantages of the honeycomb and Kagome
structures over the triangular lattice are emphasized. This specially concerns
the honeycomb lattice with its circle-like equifrequency contours where the
effective indices are close to -1 for a wide range of incident angles and
frequencies.Comment: 7 pages, 8 figures, pd
Refraction and rightness in photonic crystals
We present a study on relation between the refraction and rightness effects
in photonic crystals applied on a 2D square lattice photonic crystal. The plane
wave (the band and equifrequency contour analyses) and FDTD calculations for
both TM and TE modes revealed all possible refraction and rightness cases in
photonic crystal structures in the first three bands. In particular, we show
for the first time, a possibility of the left-handed positive refraction. This
means that left-handedness does not necessarily imply negative refraction in
photonic crystals.Comment: 10 pages, 13 figures, pd
Dynamical scaling of the quantum Hall plateau transition
Using different experimental techniques we examine the dynamical scaling of
the quantum Hall plateau transition in a frequency range f = 0.1-55 GHz. We
present a scheme that allows for a simultaneous scaling analysis of these
experiments and all other data in literature. We observe a universal scaling
function with an exponent kappa = 0.5 +/- 0.1, yielding a dynamical exponent z
= 0.9 +/- 0.2.Comment: v2: Length shortened to fulfil Journal criteri
Methods for Assessing Child and Family Outcomes in Early Childhood Special Education Programs
Although many concerns have been raised about methods of assessing outcomes in early childhood special education programs, professionals in the field are nevertheless faced with the need to select appropriate instruments for evaluating child and family outcomes as the result of intervention. A conference to address the current assessment needs of professionals was convened. This paper summarizes this conference, in which five prominent individuals in the field of early childhood special education gave specific recommendations for one child and one family outcome measure which would be applicable to a range of handicapped children between birth and age 5 being served in typical early intervention programs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68510/2/10.1177_027112148600600202.pd
Scalar-Tensor Cosmological Models
We analyze the qualitative behaviors of scalar-tensor cosmologies with an
arbitrary monotonic function. In particular, we are interested
on scalar-tensor theories distinguishable at early epochs from General
Relativity (GR) but leading to predictions compatible with solar-system
experiments. After extending the method developed by Lorentz-Petzold and
Barrow, we establish the conditions required for convergence towards GR at
. Then, we obtain all the asymptotic analytical solutions
at early times which are possible in the framework of these theories. The
subsequent qualitative evolution, from these asymptotic solutions until their
later convergence towards GR, has been then analyzed by means of numerical
computations. From this analysis, we have been able to establish a
classification of the different qualitative behaviors of scalar-tensor
cosmological models with an arbitrary monotonic function.Comment: uuencoded compressed postscript file containing 41 pages, with 9
figures, accepted for publication in Physical Review
- …