7 research outputs found
Numerical analysis of fold-pitchfork bifurcation with symmetry and its application in the pipe flow
In this paper, we study the numerical analysis of fold-pitchfork bifurcation with Z2 symmetry. For this purpose, explicit formulas for the critical coefficients of this bifurcation are obtained and non-degeneracy conditions of this bifurcation are determined. Then, local bifurcations, bifurcation curves and phase portraits are computed by MatCont toolbox. We will emphasize an example serving as a model of pipe flo
The 1:2:4 resonance in a particle chain
We consider four masses in a circular configuration with nearest-neighbour interaction, generalising the spatially periodic Fermi–Pasta–Ulam-chain where all masses are equal. We identify the mass ratios that produce the 1:2:4 resonance — the normal form in general is non-integrable already at cubic order. Taking two of the four masses equal allows to retain a discrete symmetry of the fully symmetric Fermi–Pasta–Ulam-chain and yields an integrable normal form approximation. The latter is also true if the cubic terms of the potential vanish. We put these cases in context and analyse the resulting dynamics, including a detuning of the 1:2:4 resonance within the particle chain
The 1:2:4 resonance in a particle chain
We consider four masses in a circular configuration with nearest-neighbour interaction, generalising the spatially periodic Fermi–Pasta–Ulam-chain where all masses are equal. We identify the mass ratios that produce the 1:2:4 resonance — the normal form in general is non-integrable already at cubic order. Taking two of the four masses equal allows to retain a discrete symmetry of the fully symmetric Fermi–Pasta–Ulam-chain and yields an integrable normal form approximation. The latter is also true if the cubic terms of the potential vanish. We put these cases in context and analyse the resulting dynamics, including a detuning of the 1:2:4 resonance within the particle chain