1,655 research outputs found
Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective
Catecholamine neurotransmission plays a key role in regulating a variety of behavioral and physiologic processes, and its dysregulation is implicated in both neurodegenerative and neuropsychiatric disorders. Over the last four decades, in vivo electrochemistry has enabled the discovery of contrasting catecholamine regulation in the brain. These rapid and spatially resolved measurements have been conducted in brain slices, and in anesthetized and freely behaving animals. In this review, we describe the methods enabling in vivo measurements of dopamine and norepinephrine, and subsequent findings regarding their release and regulation in intact animals. We thereafter discuss key studies in awake animals, demonstrating that these catecholamines are not only differentially regulated, but are released in opposition of each other during appetitive and aversive stimuli
One month of cocaine abstinence potentiates rapid dopamine signaling in the nucleus accumbens core
Cocaine addiction is a chronic relapsing disorder that is difficult to treat in part because addicts relapse even after extended periods of abstinence. Given the importance of the mesolimbic dopamine (DA) system in drug addiction, we sought to characterize cocaine abstinence induced changes in rapid DA signaling in the nucleus accumbens (NAc). Here, rats were trained to self-administer cocaine for 14 consecutive days, then divided into two groups. Day 1 rats (D1; n = 7) underwent 24 hours of abstinence; Day 30 rats (D30; n = 7) underwent one month of abstinence. After abstinence, all rats underwent a single extinction session. Immediately after, rats were deeply anesthetized and fast scan cyclic voltammetry (FSCV) was used to measure DA release and uptake dynamics in the NAc core before and following a single cocaine injection. We show that one month of cocaine abstinence potentiates the peak concentration of electrically evoked DA in the NAc core following an acute injection of cocaine. This potentiation is not related to alterations in DA uptake parameters, which are unchanged following abstinence, but may reflect alterations in release. These results further support the abundance of literature showing that cocaine abstinence induces neuroplasticity in brain areas implicated in drug reward and relapse. The present findings also demonstrate critical differences between abstinence-induced neuroadaptations in DA signaling and those caused by drug exposure itself
Electroosmotic Flow and Its Contribution to Iontophoretic Delivery
Iontophoresis is the movement of charged molecules in solution under applied current using pulled multi-barrel glass capillaries drawn to a sharp tip. The technique is generally non-quantitative, and to address this, we have characterized the ejection of charged and neutral species using carbon-fiber electrodes attached to iontophoretic barrels. Our results show that observed ejections are due to the sum of iontophoretic and electroosmotic forces. Using the neutral, electroactive molecule 2-(4-nitrophenoxy) ethanol (NPE), which is only transported by electroosmotic flow (EOF), a positive correlation between the amount ejected and the diameter of each barrel's tip was found. In addition, using various charged and neutral electroactive compounds we found that, when each compound is paired with the EOF marker, the percentage of the ejection due to EOF remains constant. This percentage varies for each pair of compounds, and the differences in mobility are positively correlated to differences in electrophoretic mobility. Overall, the results show that capillary electrophoresis (CE) can be used to predict the percentage of ejection that will be due to EOF. With this information, quantitative iontophoresis is possible for electrochemically inactive drugs by using NPE as a marker for EOF
Temperature-dependent differences between readily releasable and reserve pool vesicles in chromaffin cells
AbstractStatistical differences between amperometric traces recorded from chromaffin cells using K+ and Ba2+ secretagogues support the assertion that readily releasable pool (RRP) and reserve pool (RP) vesicles can be probed with pool-specific secretagogues. Release from the RRP was evoked by K+ while release from the RP was evoked by Ba2+. Similar temperature-dependent changes in spike area and half-width for both pools suggest that the content of RRP and RP vesicles is similar and packaged in the same way. Differences between the vesicle pools were revealed in the temperature dependence of spike frequency. While the burst spike frequency of the RRP, which is comprised of pre-docked and primed vesicles, increased 2.8% per °C, the RP spike frequency increased 12% per °C. This difference is attributed to a temperature-dependent mobilization of the RP. Furthermore, the RP exhibited more foot events at room temperature than the RRP but this difference was not apparent at 37 °C. This trend suggests that RP vesicle membranes have a compromised surface tension compared to RRP vesicles. Collectively, the changes of release characteristics with temperature reveal distinctions between the RRP and the RP
Conical Tungsten Tips as Substrates for the Preparation of Ultramicroelectrodes â€
Here we describe a simple method to prepare voltammetric microelectrodes using tungsten wires as a substrate. Tungsten wires have high tensile modulus and enable the fabrication of electrodes that have small dimensions overall while retaining rigidity. In this work, 125 μm tungsten wires with a conical tip were employed. For the preparation of gold or platinum ultramicroelectrodes, commercial tungsten microelectrodes, completely insulated except at the tip, were used as substrates. Following removal of oxides from the exposed tungsten, platinum or gold was electroplated yielding surfaces with an electroactive area of between 1×10−6 cm2 to 2×10−6 cm2. Carbon surfaces on the etched tip of tungsten microwires were prepared by coating with photoresist followed by pyrolysis. The entire electrode was then insulated with Epoxylite except the tip yielding an exposed carbon surface with an area of around 4×10−6 cm2 to 6×10−6 cm2. All three types of ultramicroelectrodes fabricated on the tungsten wire had similar electrochemical behavior to electrodes fabricated from wires or fibers insulated with glass tubes
Facilitation of Quantal Release Induced by a D1-like Receptor on Bovine Chromaffin Cells â€
Dopaminergic receptors are found on bovine adrenal chromaffin cells and have been implicated in the facilitation of an inward calcium current [Artalejo et al., (1990) Nature 348, 239–242] that could enhance release. However, previous studies using incubations of long duration (minutes) with dopaminergic receptor antagonists have found instead an inhibition of catecholamine release. In this work we used brief (subsecond) chemical depolarizing stimuli to reexamine the role of dopaminergic receptors on exocytosis from bovine adrenal chromaffin cells. Responses to consecutive depolarizing stimuli were compared using amperometry to monitor vesicular release events and intracellular fura-2 to examine Ca2+ dynamics within individual cells. Restoration of intracellular Ca2+ levels to their initial values following exposure to 60 mM K+ was found to be prolonged unless the exposure was brief (0.5 s) and the cells were maintained at 37ºC. However, with these optimum conditions, a second stimulation evoked more exocytotic events than the first. This effect was blocked by SCH-23390, a D1 antagonist, in a dose dependent fashion, but not by raclopride, a D2 antagonist. The D1 agonist, SKF-38393, enhanced the number of exocytotic events as did prior exposure of the cell to epinephrine. Taken together, the data indicate that released catecholamines can enhance their own release by interaction with a D1-like receptor on bovine adrenal chromaffin cells
Design and characterization of a microfabricated hydrogen clearance blood flow sensor
Modern cerebral blood flow (CBF) detection favors the use of either optical technologies that are limited to cortical brain regions, or expensive magnetic resonance. Decades ago, inhalation gas clearance was the choice method of quantifying CBF, but this suffered from poor temporal resolution. Electrolytic H2 clearance (EHC) generates and collects gas in situ at an electrode pair, which improves temporal resolution, but the probe size has prohibited meaningful subcortical use
Temporal Separation of Vesicle Release from Vesicle Fusion during Exocytosis
During exocytosis, vesicles in secretory cells fuse with the cellular membrane and release their contents in a Ca2+-dependent process. Release occurs initially through a fusion pore, and its rate is limited by the dissociation of the matrix-associated contents. To determine whether this dissociation is promoted by osmotic forces, we have examined the effects of elevated osmotic pressure on release and extrusion from vesicles at mast and chromaffin cells. The identity of the molecules released and the time course of extrusion were measured with fast scan cyclic voltammetry at carbon fiber microelectrodes. In external solutions of high osmolarity, release events following entry of divalent ions (Ba2+ or Ca2+) were less frequent. However, the vesicles appeared to be fused to the membrane without extruding their contents, since the maximal observed concentrations of events were less than 7% of those evoked in isotonic media. Such an isolated, intermediate fusion state, which we term "kiss-and-hold," was confirmed by immunohistochemistry at chromaffin cells. Transient exposure of cells in the kiss and hold state to isotonic solutions evoked massive release. These results demonstrate that an osmotic gradient across the fusion pore is an important driving force for exocytotic extrusion of granule contents from secretory cells following fusion pore formation
Quantitative Evaluation of 5-Hydroxytryptamine (Serotonin) Neuronal Release and Uptake: An Investigation of Extrasynaptic Transmission
Whether neurotransmitters are restricted to the synaptic cleft (participating only in hard-wired neurotransmission) or diffuse to remote receptor sites (participating in what has been termed volume or paracrine transmission) depends on a number of factors. These include (1) the location of release sites with respect to the receptors, (2) the number of molecules released, (3) the diffusional rate away from the release site, determined by both the geometry near the release site as well as binding interactions, and (4) the removal of transmitter by the relevant transporter. Fast-scan cyclic voltammetry allows for the detection of extrasynaptic concentrations of many biogenic amines, permitting direct access to many of these parameters. In this study the hypothesis that 5-hydroxytryptamine (5-HT) transmission is primarily extrasynaptic in the substantia nigra reticulata, a terminal region with identified synaptic contacts, and the dorsal raphe nucleus, a somatodendritic region with rare synaptic incidence, was tested in brain slices prepared from the rat. Using carbon fiber microelectrodes, we found the concentration of 5-HT released per stimulus pulse in both regions to be identical when elicited by single pulse stimulations or trains at high frequency. 5-HT efflux elicited by a single stimulus pulse was unaffected by uptake inhibition or receptor antagonism. Thus, synaptic efflux is not restricted by binding to intrasynaptic receptors or transporters. The number of 5-HT molecules released per terminal was estimated in the substantia nigra reticulata and was considerably less than the number of 5-HT transporter and receptor sites, reinforcing the hypothesis that these sites are extrasynaptic. Furthermore, the detected extrasynaptic concentrations closely match the affinity for the predominant 5-HT receptor in each region. Although they do not disprove the existence of classical synaptic transmission, our results support the existence of paracrine neurotransmission in both serotonergic regions
Correlation of Real-time Catecholamine Release and Cytosolic Ca 2+ at Single Bovine Chromaffin Cells
Previous investigations of the role of Ca2+ in stimulus-secretion coupling have been undertaken in populations of adrenal chromaffin cells. In the present study, the simultaneous detection of intracellular Ca2+, with the fluorescent probe fura-2, and catecholamine release, using a carbon-fiber microelectrode, are examined at single chromaffin cells in culture. Results from classic depolarizing stimuli, high potassium (30-140 mM) and 1,1-dimethyl-4-phenylpiperazinium (3-50 microM), show a dependence of peak cytosolic Ca2+ concentration and catecholamine release on secretagogue concentration. Catecholamine release induced by transient high K+ stimulation increases logarithmically with K+ concentration. Continuous exposure to veratridine (50 microM) induces oscillations in intracellular Ca2+ and at higher concentrations (100 microM) concomitant fluctuation of cytosolic Ca2+ and catecholamine secretion. Mobilization of both caffeine- and inositol trisphosphate-sensitive intracellular Ca2+ stores is found to elicit secretion with or without extracellular Ca2+. Caffeine-sensitive intracellular Ca2+ stores can be depleted, refilled, and cause exocytosis in medium without Ca2+. Single cell measurement of exocytosis and the increase in cytosolic Ca2+ induced by bradykinin-activated intracellular stores reveal cell to cell variability in exocytotic responses which is masked in populations of cells. Taken together, these results show that exocytosis of catecholamines can be induced by an increase in cytosolic Ca2+ either as a result of transmembrane entry or by release of internal stores
- …