37 research outputs found
Diffusion Time-Scale Invariance, Markovization Processes and Memory Effects in Lennard-Jones Liquids
We report the results of calculation of diffusion coefficients for
Lennard-Jones liquids, based on the idea of time-scale invariance of relaxation
processes in liquids. The results were compared with the molecular dynamics
data for Lennard-Jones system and a good agreement of our theory with these
data over a wide range of densities and temperatures was obtained. By
calculations of the non-Markovity parameter we have estimated numerically
statistical memory effects of diffusion in detail.Comment: 10 pages, 3 figure
Time-scale invariance of relaxation processes of density fluctuation in slow neutron scattering in liquid cesium
The realization of idea of time-scale invariance for relaxation processes in
liquids has been performed by the memory functions formalism. The best
agreement with experimental data for the dynamic structure factor
of liquid cesium near melting point in the range of wave vectors (0.4
\ang^{-1} \leq k \leq 2.55 \ang^{-1}) is found with the assumption of
concurrence of relaxation scales for memory functions of third and fourth
orders. Spatial dispersion of the four first points in spectrum of statistical
parameter of non-Markovity at has allowed
to reveal the non-Markov nature of collective excitations in liquid cesium,
connected with long-range memory effect.Comment: REVTEX +3 ps figure
Possibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis
The basic purpose of the paper is to draw the attention of researchers to new
possibilities of differentiation of similar signals having different nature.
One of examples of such kind of signals is presented by seismograms containing
recordings of earthquakes (EQ's) and technogenic explosions (TE's). We propose
here a discrete stochastic model for possible solution of a problem of strong
EQ's forecasting and differentiation of TE's from the weak EQ's. Theoretical
analysis is performed by two independent methods: with the use of statistical
theory of discrete non-Markov stochastic processes (Phys. Rev. E62,6178 (2000))
and the local Hurst exponent. Time recordings of seismic signals of the first
four dynamic orthogonal collective variables, six various plane of phase
portrait of four dimensional phase space of orthogonal variables and the local
Hurst exponent have been calculated for the dynamic analysis of the earth
states. The approaches, permitting to obtain an algorithm of strong EQ's
forecasting and to differentiate TE's from weak EQ's, have been developed.Comment: REVTEX +12 ps and jpg figures. Accepted for publication in Phys. Rev.
E, December 200
Analysis of the Dynamics of Liquid Aluminium: Recurrent Relation Approach
By use of the recurrent relation approach (RRA) we study the microscopic
dynamics of liquid aluminium at T=973 K and develop a theoretical model which
satisfies all the corresponding sum rules. The investigation covers the
inelastic features as well as the crossover of our theory into the
hydrodynamical and the free-particle regimes. A comparison between our
theoretical results with those following from a generalized hydrodynamical
approach is also presented. In addition to this we report the results of our
molecular dynamics simulations for liquid aluminium, which are also discussed
and compared to experimental data. The received results reveal that (i) the
microscopical dynamics of density fluctuations is defined mainly by the first
four even frequency moments of the dynamic structure factor, and (ii) the
inherent relation of the high-frequency collective excitations observed in
experimental spectra of dynamic structure factor with the two-,
three- and four-particle correlations.Comment: 11 pages, 4 figure
Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli
In our earlier study dealing with the analysis of neuromagnetic responses
(magnetoencephalograms - MEG) to flickering-color stimuli for a group of
control human subjects (9 volunteers) and a patient with photosensitive
epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy
(FNS) was able to identify specific differences in the responses of each
organism. The high specificity of individual MEG responses manifested itself in
the values of FNS parameters for both chaotic and resonant components of the
original signal. The present study applies the FNS cross-correlation function
to the analysis of correlations between the MEG responses simultaneously
measured at spatially separated points of the human cortex processing the
red-blue flickering color stimulus. It is shown that the cross-correlations for
control (healthy) subjects are characterized by frequency and phase
synchronization at different points of the cortex, with the dynamics of
neuromagnetic responses being determined by the low-frequency processes that
correspond to normal physiological rhythms. But for the patient, the frequency
and phase synchronization breaks down, which is associated with the suppression
of cortical regulatory functions when the flickering-color stimulus is applied,
and higher frequencies start playing the dominating role. This suggests that
the disruption of correlations in the MEG responses is the indicator of
pathological changes leading to photosensitive epilepsy, which can be used for
developing a method of diagnosing the disease based on the analysis with the
FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2
A simple measure of memory for dynamical processes described by the generalized Langevin equation
Memory effects are a key feature in the description of the dynamical systems
governed by the generalized Langevin equation, which presents an exact
reformulation of the equation of motion. A simple measure for the estimation of
memory effects is introduced within the framework of this description.
Numerical calculations of the suggested measure and the analysis of memory
effects are also applied for various model physical systems as well as for the
phenomena of ``long time tails'' and anomalous diffusion