3 research outputs found

    Angle-resolved photoemission spectroscopy for VO<sub>2</sub> thin films grown on TiO<sub>2</sub> (0 0 1) substrates

    Get PDF
    We present the results of angle-resolved photoemission spectroscopy (ARPES) measurements of metallic VO2 thin films. The VO2 thin films have been grown on TiO2 (0 0 1) single crystal substrates using pulsed laser deposition. The films exhibit a first-order metal–insulator transition (MIT) at 305 K. In the ARPES spectra of the metallic phase for the films, the O 2p band shows highly dispersive feature in the binding energy range of 3–8 eV along the Г–Z direction. The periodicity of the dispersive band is found to be 2.2 Å-1 which is almost identical with the periodicity expected from the c-axis length of the VO2 thin films. The overall feature of the experimental band structure is similar to the band structure calculations, supporting that we have succeeded in observing the dispersive band of the O 2p state in the metallic VO2 thin film. The present work indicates that the ARPES measurements using epitaxial thin films are promising for determining the band structure of VO2

    Oscillatory Exchange Coupling and Positive Magnetoresistance in Epitaxial Oxide Heterostructures

    Full text link
    Oscillations in the exchange coupling between ferromagnetic La2/3Ba1/3MnO3La_{2/3}Ba_{1/3}MnO_3 layers with paramagnetic LaNiO3LaNiO_3 spacer layer thickness has been observed in epitaxial heterostructures of the two oxides. This behavior is explained within the RKKY model employing an {\it ab initio} calculated band structure of LaNiO3LaNiO_3, taking into account strong electron scattering in the spacer. Antiferromagnetically coupled superlattices exhibit a positive current-in-plane magnetoresistance.Comment: 4 pages (RevTeX), 5 figures (EPS
    corecore