52 research outputs found
An early Little Ice Age brackish water invasion along the south coast of the Caspian Sea (sediment of Langarud wetland) and its wider impacts on environment and people
Caspian Sea level has undergone significant changes through time with major impacts not only on the surrounding coasts, but also offshore. This study reports a brackish water invasion on the southern coast of the Caspian Sea constructed from a multi-proxy analysis of sediment retrieved from the Langarud wetland. The ground surface level of wetland is >6 m higher than the current Caspian Sea level (at -27.41 m in 2014) and located >11 km far from the coast. A sequence covering the last millennium was dated by three radiocarbon dates. The results from this new study suggest that Caspian Sea level rose up to at least -21.44 m (i.e. >6 m above the present water level) during the early Little Ice Age. Although previous studies in the southern coast of the Caspian Sea have detected a high-stand during the Little Ice Age period, this study presents the first evidence that this high-stand reached so far inland and at such a high altitude. Moreover, it confirms one of the very few earlier estimates of a high-stand at -21 m for the second half of the 14th century. The effects of this large-scale brackish water invasion on soil properties would have caused severe disruption to regional agriculture, thereby destabilizing local dynasties and facilitating a rapid Turko-Mongol expansion of Tamerlane’s armies from the east.N Ghasemi (INIOAS), V Jahani (Gilan Province Cultural Heritage and Tourism Organisation) and A Naqinezhad (University of Mazandaran), INQUA QuickLakeH project (no. 1227) and to the European project Marie Curie, CLIMSEAS-PIRSES-GA-2009-24751
Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide L-Ala-L-Pro-Gly·H2O Revealed by Adiabatic Calorimetry
We demonstrate application of precise adiabatic vacuum calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuum calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide.National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-003151)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-001960)National Institute of Biomedical Imaging and Bioengineering (U.S.) (EB-002026
- …