3,525 research outputs found
Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values
The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data
Bounds on Quantum Correlations in Bell Inequality Experiments
Bell inequality violation is one of the most widely known manifestations of
entanglement in quantum mechanics; indicating that experiments on physically
separated quantum mechanical systems cannot be given a local realistic
description. However, despite the importance of Bell inequalities, it is not
known in general how to determine whether a given entangled state will violate
a Bell inequality. This is because one can choose to make many different
measurements on a quantum system to test any given Bell inequality and the
optimization over measurements is a high-dimensional variational problem. In
order to better understand this problem we present algorithms that provide, for
a given quantum state, both a lower bound and an upper bound on the maximal
expectation value of a Bell operator. Both bounds apply techniques from convex
optimization and the methodology for creating upper bounds allows them to be
systematically improved. In many cases these bounds determine measurements that
would demonstrate violation of the Bell inequality or provide a bound that
rules out the possibility of a violation. Examples are given to illustrate how
these algorithms can be used to conclude definitively if some quantum states
violate a given Bell inequality.Comment: 13 pages, 1 table, 2 figures. Updated version as published in PR
Mirror formation control in the vicinity of an asteroid
Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law
Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization
A versatile method is described for the practical computation of the discrete
Fourier transforms (DFT) of a continuous function given by its values
at the points of a uniform grid generated by conjugacy classes
of elements of finite adjoint order in the fundamental region of
compact semisimple Lie groups. The present implementation of the method is for
the groups SU(2), when is reduced to a one-dimensional segment, and for
in multidimensional cases. This simplest case
turns out to result in a transform known as discrete cosine transform (DCT),
which is often considered to be simply a specific type of the standard DFT.
Here we show that the DCT is very different from the standard DFT when the
properties of the continuous extensions of these two discrete transforms from
the discrete grid points to all points are
considered. (A) Unlike the continuous extension of the DFT, the continuous
extension of (the inverse) DCT, called CEDCT, closely approximates
between the grid points . (B) For increasing , the derivative of CEDCT
converges to the derivative of . And (C), for CEDCT the principle of
locality is valid. Finally, we use the continuous extension of 2-dimensional
DCT to illustrate its potential for interpolation, as well as for the data
compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's
Repor
Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems
Confined quantum systems involving identical interacting particles are to
be found in many areas of physics, including condensed matter, atomic and
chemical physics. A beyond-mean-field perturbation method that is applicable,
in principle, to weakly, intermediate, and strongly-interacting systems has
been set forth by the authors in a previous series of papers. Dimensional
perturbation theory was used, and in conjunction with group theory, an analytic
beyond-mean-field correlated wave function at lowest order for a system under
spherical confinement with a general two-body interaction was derived. In the
present paper, we use this analytic wave function to derive the corresponding
lowest-order, analytic density profile and apply it to the example of a
Bose-Einstein condensate.Comment: 15 pages, 2 figures, accepted by Physics Review A. This document was
submitted after responding to a reviewer's comment
Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models
A computation scheme for solving elliptic boundary value problems with
axially symmetric confining potentials using different sets of one-parameter
basis functions is presented. The efficiency of the proposed symbolic-numerical
algorithms implemented in Maple is shown by examples of spheroidal quantum dot
models, for which energy spectra and eigenfunctions versus the spheroid aspect
ratio were calculated within the conventional effective mass approximation.
Critical values of the aspect ratio, at which the discrete spectrum of models
with finite-wall potentials is transformed into a continuous one in strong
dimensional quantization regime, were revealed using the exact and adiabatic
classifications.Comment: 6 figures, Submitted to Proc. of The 12th International Workshop on
Computer Algebra in Scientific Computing (CASC 2010) Tsakhkadzor, Armenia,
September 5 - 12, 201
Incompatible sets of gradients and metastability
We give a mathematical analysis of a concept of metastability induced by
incompatibility. The physical setting is a single parent phase, just about to
undergo transformation to a product phase of lower energy density. Under
certain conditions of incompatibility of the energy wells of this energy
density, we show that the parent phase is metastable in a strong sense, namely
it is a local minimizer of the free energy in an neighbourhood of its
deformation. The reason behind this result is that, due to the incompatibility
of the energy wells, a small nucleus of the product phase is necessarily
accompanied by a stressed transition layer whose energetic cost exceeds the
energy lowering capacity of the nucleus. We define and characterize
incompatible sets of matrices, in terms of which the transition layer estimate
at the heart of the proof of metastability is expressed. Finally we discuss
connections with experiment and place this concept of metastability in the
wider context of recent theoretical and experimental research on metastability
and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea
Classification of the Entangled States of
We develop a novel method in classifying the multipartite entanglement state
of under stochastic local operation and classical
communication. In this method, all inequivalent classes of true entangled state
can be assorted directly without knowing the classification information of
lower dimension ones for any given dimension . It also gives a nature
explanation for the non-local parameters remaining in the entanglement classes
while .Comment: 29 pages, 5 figure
- …