3,525 research outputs found

    Statistical correlation of structural mode shapes from test measurements and NASTRAN analytical values

    Get PDF
    The software and procedures of a system of programs used to generate a report of the statistical correlation between NASTRAN modal analysis results and physical tests results from modal surveys are described. Topics discussed include: a mathematical description of statistical correlation, a user's guide for generating a statistical correlation report, a programmer's guide describing the organization and functions of individual programs leading to a statistical correlation report, and a set of examples including complete listings of programs, and input and output data

    Bounds on Quantum Correlations in Bell Inequality Experiments

    Get PDF
    Bell inequality violation is one of the most widely known manifestations of entanglement in quantum mechanics; indicating that experiments on physically separated quantum mechanical systems cannot be given a local realistic description. However, despite the importance of Bell inequalities, it is not known in general how to determine whether a given entangled state will violate a Bell inequality. This is because one can choose to make many different measurements on a quantum system to test any given Bell inequality and the optimization over measurements is a high-dimensional variational problem. In order to better understand this problem we present algorithms that provide, for a given quantum state, both a lower bound and an upper bound on the maximal expectation value of a Bell operator. Both bounds apply techniques from convex optimization and the methodology for creating upper bounds allows them to be systematically improved. In many cases these bounds determine measurements that would demonstrate violation of the Bell inequality or provide a bound that rules out the possibility of a violation. Examples are given to illustrate how these algorithms can be used to conclude definitively if some quantum states violate a given Bell inequality.Comment: 13 pages, 1 table, 2 figures. Updated version as published in PR

    Mirror formation control in the vicinity of an asteroid

    Get PDF
    Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law

    Properties of continuous Fourier extension of the discrete cosine transform and its multidimensional generalization

    Full text link
    A versatile method is described for the practical computation of the discrete Fourier transforms (DFT) of a continuous function g(t)g(t) given by its values gjg_{j} at the points of a uniform grid FNF_{N} generated by conjugacy classes of elements of finite adjoint order NN in the fundamental region FF of compact semisimple Lie groups. The present implementation of the method is for the groups SU(2), when FF is reduced to a one-dimensional segment, and for SU(2)×...×SU(2)SU(2)\times ... \times SU(2) in multidimensional cases. This simplest case turns out to result in a transform known as discrete cosine transform (DCT), which is often considered to be simply a specific type of the standard DFT. Here we show that the DCT is very different from the standard DFT when the properties of the continuous extensions of these two discrete transforms from the discrete grid points tj;j=0,1,...Nt_j; j=0,1, ... N to all points tFt \in F are considered. (A) Unlike the continuous extension of the DFT, the continuous extension of (the inverse) DCT, called CEDCT, closely approximates g(t)g(t) between the grid points tjt_j. (B) For increasing NN, the derivative of CEDCT converges to the derivative of g(t)g(t). And (C), for CEDCT the principle of locality is valid. Finally, we use the continuous extension of 2-dimensional DCT to illustrate its potential for interpolation, as well as for the data compression of 2D images.Comment: submitted to JMP on April 3, 2003; still waiting for the referee's Repor

    Analytic, Group-Theoretic Density Profiles for Confined, Correlated N-Body Systems

    Full text link
    Confined quantum systems involving NN identical interacting particles are to be found in many areas of physics, including condensed matter, atomic and chemical physics. A beyond-mean-field perturbation method that is applicable, in principle, to weakly, intermediate, and strongly-interacting systems has been set forth by the authors in a previous series of papers. Dimensional perturbation theory was used, and in conjunction with group theory, an analytic beyond-mean-field correlated wave function at lowest order for a system under spherical confinement with a general two-body interaction was derived. In the present paper, we use this analytic wave function to derive the corresponding lowest-order, analytic density profile and apply it to the example of a Bose-Einstein condensate.Comment: 15 pages, 2 figures, accepted by Physics Review A. This document was submitted after responding to a reviewer's comment

    Symbolic-Numeric Algorithms for Computer Analysis of Spheroidal Quantum Dot Models

    Full text link
    A computation scheme for solving elliptic boundary value problems with axially symmetric confining potentials using different sets of one-parameter basis functions is presented. The efficiency of the proposed symbolic-numerical algorithms implemented in Maple is shown by examples of spheroidal quantum dot models, for which energy spectra and eigenfunctions versus the spheroid aspect ratio were calculated within the conventional effective mass approximation. Critical values of the aspect ratio, at which the discrete spectrum of models with finite-wall potentials is transformed into a continuous one in strong dimensional quantization regime, were revealed using the exact and adiabatic classifications.Comment: 6 figures, Submitted to Proc. of The 12th International Workshop on Computer Algebra in Scientific Computing (CASC 2010) Tsakhkadzor, Armenia, September 5 - 12, 201

    Incompatible sets of gradients and metastability

    Full text link
    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L1L^1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiment and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.Comment: Archive for Rational Mechanics and Analysis, to appea

    Classification of the Entangled States of 2×N×N2 \times N \times N

    Full text link
    We develop a novel method in classifying the multipartite entanglement state of 2×N×N2\times N\times N under stochastic local operation and classical communication. In this method, all inequivalent classes of true entangled state can be assorted directly without knowing the classification information of lower dimension ones for any given dimension NN. It also gives a nature explanation for the non-local parameters remaining in the entanglement classes while N4N\geq 4 .Comment: 29 pages, 5 figure
    corecore