301 research outputs found

    An Analytical Approach to the Protein Designability Problem

    Full text link
    We present an analytical method for determining the designability of protein structures. We apply our method to the case of two-dimensional lattice structures, and give a systematic solution for the spectrum of any structure. Using this spectrum, the designability of a structure can be estimated. We outline a heirarchy of structures, from most to least designable, and show that this heirarchy depends on the potential that is used.Comment: 16 pages 4 figure

    Localization in simple multiparticle catalytic absorption model

    Full text link
    We consider the phase transition in the system of n simultaneously developing random walks on the halfline x>=0. All walks are independent on each others in all points except the origin x=0, where the point well is located. The well depth depends on the number of particles simultaneously staying at x=0. We consider the limit n>>1 and show that if the depth growth faster than 3/2 n ln(n) with n, then all random walks become localized simultaneously at the origin. In conclusion we discuss the connection of that problem with the phase transition in the copolymer chain with quenched random sequence of monomers considered in the frameworks of replica approach.Comment: 17 pages in LaTeX, 5 PostScript figures; submitted to J.Phys.(A): Math. Ge

    Free Energy Self-Averaging in Protein-Sized Random Heteropolymers

    Full text link
    Current theories of heteropolymers are inherently macrpscopic, but are applied to folding proteins which are only mesoscopic. In these theories, one computes the averaged free energy over sequences, always assuming that it is self-averaging -- a property well-established only if a system with quenched disorder is macroscopic. By enumerating the states and energies of compact 18, 27, and 36mers on a simplified lattice model with an ensemble of random sequences, we test the validity of the self-averaging approximation. We find that fluctuations in the free energy between sequences are weak, and that self-averaging is a valid approximation at the length scale of real proteins. These results validate certain sequence design methods which can exponentially speed up computational design and greatly simplify experimental realizations.Comment: 4 pages, 3 figure

    Two-Dimensional Polymers with Random Short-Range Interactions

    Full text link
    We use complete enumeration and Monte Carlo techniques to study two-dimensional self-avoiding polymer chains with quenched ``charges'' ±1\pm 1. The interaction of charges at neighboring lattice sites is described by qiqjq_i q_j. We find that a polymer undergoes a collapse transition at a temperature TθT_{\theta}, which decreases with increasing imbalance between charges. At the transition point, the dependence of the radius of gyration of the polymer on the number of monomers is characterized by an exponent νθ=0.60±0.02\nu_{\theta} = 0.60 \pm 0.02, which is slightly larger than the similar exponent for homopolymers. We find no evidence of freezing at low temperatures.Comment: 4 two-column pages, 6 eps figures, RevTex, Submitted to Phys. Rev.

    Modeling study on the validity of a possibly simplified representation of proteins

    Get PDF
    The folding characteristics of sequences reduced with a possibly simplified representation of five types of residues are shown to be similar to their original ones with the natural set of residues (20 types or 20 letters). The reduced sequences have a good foldability and fold to the same native structure of their optimized original ones. A large ground state gap for the native structure shows the thermodynamic stability of the reduced sequences. The general validity of such a five-letter reduction is further studied via the correlation between the reduced sequences and the original ones. As a comparison, a reduction with two letters is found not to reproduce the native structure of the original sequences due to its homopolymeric features.Comment: 6 pages with 4 figure

    Origin of Native Driving Force in Protein Folding

    Full text link
    We derive an expression with four adjustable parameters that reproduces well the 20x20 Miyazawa-Jernigan potential matrix extracted from known protein structures. The numerical values of the parameters can be approximately computed from the surface tension of water, water-screened dipole interactions between residues and water and among residues, and average exposures of residues in folded proteins.Comment: LaTeX file, Postscript file; 4 pages, 1 figure (mij.eps), 2 table

    Folding, Design and Determination of Interaction Potentials Using Off-Lattice Dynamics of Model Heteropolymers

    Full text link
    We present the results of a self-consistent, unified molecular dynamics study of simple model heteropolymers in the continuum with emphasis on folding, sequence design and the determination of the interaction parameters of the effective potential between the amino acids from the knowledge of the native states of the designed sequences.Comment: 8 pages, 3 Postscript figures, uses RevTeX. Submitted to Physical Review Letter

    Nucleation phenomena in protein folding: The modulating role of protein sequence

    Full text link
    For the vast majority of naturally occurring, small, single domain proteins folding is often described as a two-state process that lacks detectable intermediates. This observation has often been rationalized on the basis of a nucleation mechanism for protein folding whose basic premise is the idea that after completion of a specific set of contacts forming the so-called folding nucleus the native state is achieved promptly. Here we propose a methodology to identify folding nuclei in small lattice polymers and apply it to the study of protein molecules with chain length N=48. To investigate the extent to which protein topology is a robust determinant of the nucleation mechanism we compare the nucleation scenario of a native-centric model with that of a sequence specific model sharing the same native fold. To evaluate the impact of the sequence's finner details in the nucleation mechanism we consider the folding of two non- homologous sequences. We conclude that in a sequence-specific model the folding nucleus is, to some extent, formed by the most stable contacts in the protein and that the less stable linkages in the folding nucleus are solely determined by the fold's topology. We have also found that independently of protein sequence the folding nucleus performs the same `topological' function. This unifying feature of the nucleation mechanism results from the residues forming the folding nucleus being distributed along the protein chain in a similar and well-defined manner that is determined by the fold's topological features.Comment: 10 Figures. J. Physics: Condensed Matter (to appear

    Reversible stretching of homopolymers and random heteropolymers

    Full text link
    We have analyzed the equilibrium response of chain molecules to stretching. For a homogeneous sequence of monomers, the induced transition from compact globule to extended coil below the θ\theta-temperature is predicted to be sharp. For random sequences, however, the transition may be smoothed by a prevalence of necklace-like structures, in which globular regions and coil regions coexist in a single chain. As we show in the context of a random copolymer, preferential solvation of one monomer type lends stability to such structures. The range of stretching forces over which necklaces are stable is sensitive to chain length as well as sequence statistics.Comment: 14 pages, 4 figure
    corecore