759 research outputs found

    Hysteresis and bi-stability by an interplay of calcium oscillations and action potential firing

    Full text link
    Many cell types exhibit oscillatory activity, such as repetitive action potential firing due to the Hodgkin-Huxley dynamics of ion channels in the cell membrane or reveal intracellular inositol triphosphate (IP3_3) mediated calcium oscillations (CaOs) by calcium-induced calcium release channels (IP3_3-receptor) in the membrane of the endoplasmic reticulum (ER). The dynamics of the excitable membrane and that of the IP3_3-mediated CaOs have been the subject of many studies. However, the interaction between the excitable cell membrane and IP3_3-mediated CaOs, which are coupled by cytosolic calcium which affects the dynamics of both, has not been studied. This study for the first time applied stability analysis to investigate the dynamic behavior of a model, which includes both an excitable membrane and an intracellular IP3_3-mediated calcium oscillator. Taking the IP3_3 concentration as a control parameter, the model exhibits a novel rich spectrum of stable and unstable states with hysteresis. The four stable states of the model correspond in detail to previously reported growth-state dependent states of the membrane potential of normal rat kidney fibroblasts in cell culture. The hysteresis is most pronounced for experimentally observed parameter values of the model, suggesting a functional importance of hysteresis. This study shows that the four growth-dependent cell states may not reflect the behavior of cells that have differentiated into different cell types with different properties, but simply reflect four different states of a single cell type, that is characterized by a single model.Comment: 29 pages, 6 figure

    Topological Phase Diagram of a Two-Subband Electron System

    Full text link
    We present a phase diagram for a two-dimensional electron system with two populated subbands. Using a gated GaAs/AlGaAs single quantum well, we have mapped out the phases of various quantum Hall states in the density-magnetic filed plane. The experimental phase diagram shows a very different topology from the conventional Landau fan diagram. We find regions of negative differential Hall resistance which are interpreted as preliminary evidence of the long sought reentrant quantum Hall transitions. We discuss the origins of the anomalous topology and the negative differential Hall resistance in terms of the Landau level and subband mixing.Comment: 4 pages, 4 figure

    Investigating the current knowledge and needs concerning a follow-up for long-term cardiovascular risks in Dutch women with a preeclampsia history:a qualitative study

    Get PDF
    Background There is increasing evidence that a history of preeclampsia is an important risk factor for future cardiovascular events. Awareness of this risk could provide opportunities for identification of women at risk, with opportunities for prevention and / or early intervention. A standardized follow-up has not yet been implemented in the north of the Netherlands. The objective of this qualitative study was to explore the opinions and wishes among women and physicians about the follow-up for women with a history of preeclampsia. Methods Semi-structured interviews with 15 women and 14 physicians (5 obstetricians, 4 general practitioners, 3 vascular medicine specialists and 2 cardiologists) were performed and addressed topics about knowledge on CVR, current - and future follow-up. Women were approached through the HELLP foundation and their physicians. Physicians were approached by email. The interviews were recorded, typed and coded using ATLAS.ti software. A theoretical-driven thematic analysis was performed. Results Women had some knowledge about the association between preeclampsia and the increased CVR, but missed information from their health care providers. Specialists were aware of the association, but the information and advice they provided to their patients was minimal and inconsistent according to themselves. Whereas some general practitioners regarded their own knowledge as limited. There was a clear desire among women for a more extensive follow-up with specific attention to both emotional and physical consequences of preeclampsia. Physicians indicated that they preferred to see a follow up program concerning the CVR at the general practitioner as part of the already existent cardiovascular risk management (CVRM) program. Conclusion Women and medical specialists consider it important to improve aftercare for women after a pregnancy complicated by preeclampsia. Introducing these women into the CVRM program at the general practitioner is regarded as a preferred first step. Further research is warranted to establish an evidence-based guideline for the follow-up of these women

    Double Degeneracy and Jahn-Teller Effects in CMR Perovskites

    Full text link
    Jahn-Teller (JT) electron-phonon coupling effects in the colossal magnetoresistance perovskite compounds La1xAxMnO3La_{1-x}A_xMnO_3 are investigated. Electron-electron correlations between two degenerate Mn ege_g orbitals are studied in the Gutzwiller approximation. The static JT distortion and antiadiabatic polaron effects are studied in a modified Lang-Firsov approximation. We find that (i) the electron or hole character of the charge carrier depends on the static JT distortion, and (ii) due to the two-component nature of the JT coupling, fluctuations in the JT distortion direction contribute to the charge transport in similar fashion as the local spins.Comment: 11 RevTeX pages. 3 Figures available upon request. submitted to Phys. rev. B (Rapid Communications

    Charge Localization in Disordered Colossal-Magnetoresistance Manganites

    Full text link
    The metallic or insulating nature of the paramagnetic phase of the colossal-magnetoresistance manganites is investigated via a double exchange Hamiltonian with diagonal disorder. Mobility edge trajectory is determined with the transfer matrix method. Density of states calculations indicate that random hopping alone is not sufficient to induce Anderson localization at the Fermi level with 20-30% doping. We argue that the metal-insulator transtion is likely due to the formation of localized polarons from nonuniform extended states as the effective band width is reduced by random hoppings and electron-electron interactions.Comment: 4 pages, RevTex. 4 Figures include

    Double Exchange Alone Does Not Explain the Resistivity of La1xSrxMnO3La_{1-x} Sr_x MnO_3

    Full text link
    The La1xSrxMnO3La_{1-x} Sr_x MnO_3 system with 0.2x0.40.2 \lesssim x \lesssim 0.4 has traditionally been modelled with a ``double exchange'' Hamiltonian, in which it is assumed that the only relevant physics is the tendency of carrier hopping to line up neighboring spins. We present a solution of the double exchange model, show it is incompatible with many aspects of the resistivity data, and propose that a strong electron-phonon interaction arising from a Jahn-Teller splitting of the outer Mn d-level plays a crucial role.Comment: Figure available via concentional mail. Contact [email protected]

    Monte Carlo Simulations for the Magnetic Phase Diagram of the Double Exchange Hamiltonian

    Full text link
    We have used Monte Carlo simulation techniques to obtain the magnetic phase diagram of the double exchange Hamiltonian. We have found that the Berry's phase of the hopping amplitude has a negligible effect in the value of the magnetic critical temperature. To avoid finite size problems in our simulations we have also developed an approximated expression for the double exchange energy. This allows us to obtain the critical temperature for the ferromagnetic to paramagnetic transition more accurately. In our calculations we do not observe any strange behavior in the kinetic energy, chemical potential or electron density of states near the magnetic critical temperature. Therefore, we conclude that other effects, not included in the double exchange Hamiltonian, are needed to understand the metal-insulator transition which occurs in the manganites.Comment: 6 pages Revtex, 8 PS figure

    Ultrafast photoinduced reflectivity transients in (Nd0.5Sr0.5)MnO3(Nd_{0.5}Sr_{0.5})MnO_3

    Full text link
    The temperature dependence of ultrafast photoinduced reflectivity transients is reported in Nd0.5_{0.5}Sr0.5_{0.5}MnO3_{3} thin film. The photoinduced reflectivity shows a complex response with very different temperature dependences on different timescales. The response on the sub-ps timescale appears to be only weakly sensitive to the 270K-metal-insulator phase transition. Below 160\sim 160 K the sub-ps response displays a two component behavior indicating inhomogeneity of the film resulting from the substrate induced strain. On the other hand, the slower response on the 10-100 ps timescale is sensitive only to the metal-insulator phase transition and is in agreement with some previously published results. The difference in the temperature dependences of the responses on nanosecond and μ\mu s timescales indicates that thermal equilibrium between the different degrees of fredom is established relatively slowly - on a nanosecond timescale

    Impact of Charge Ordering on Magnetic Correlations in Perovskite (Bi,Ca)MnO_3

    Full text link
    Single crystalline (Bi,Ca)MnO3 (74< %Ca <82) were studied with neutron scattering, electron diffraction and bulk magnetic measurement. We discovered dynamic ferromagnetic spin correlations at high temperatures, which are replaced by antiferromagnetic spin fluctuations at a concomitant charge ordering and structural transition. Our results indicate that thermal-activated hopping of the Jahn-Teller active e_g electrons in these insulating materials, nevertheless, induce ferromagnetic interaction through double-exchange mechanism. It is the ordering of these charges competing with the double-exchange ferromagnetic metallic state.Comment: 11 pages, 3 figures, Revte

    Electron Correlation and Jahn-Teller Interaction in Manganese Oxides

    Full text link
    The interplay between the electron repulsion UU and the Jahn-Teller electron-phonon interation ELRE_{LR} is studied with a large dd model for the ferromagnetic state of the manganese oxides. These two interactions collaborate to induce the local isospin (orbital) moments and reduce the bandwidth BB. Especially the retardation effect of the Jahn-Teller phonon with the frequency Ω\Omega is effective to reduce BB, but the strong Ω\Omega-dependence occurs even when the Coulombic interaction is dominating (U>>ELR U >> E_{LR}) as long as ELR>ΩE_{LR} > \Omega. The phonon spectrum consists of two components, i.e., the temperature independent sharp peak at ω=Ω~=Ω[(U+4ELR)/U]1/2\omega = {\tilde \Omega} = \Omega [(U +4 E_{LR})/U]^{1/2} and that corresponding to the Kondo peak. These results compared with the experiments suggest that Ω<ELR<U\Omega <E_{LR} <U in the metallic manganese oxides.Comment: REVTE
    corecore