28,955 research outputs found
Hawking radiation from dynamical horizons
In completely local settings, we establish that a dynamically evolving black
hole horizon can be assigned a Hawking temperature. Moreover, we calculate the
Hawking flux and show that the radius of the horizon shrinks.Comment: 5 Page
Strange freezeout
We argue that known systematics of hadron cross sections may cause different
particles to freeze out of the fireball produced in heavy-ion collisions at
different times. We find that a simple model with two freezeout points is a
better description of data than that with a single freezeout, while still
remaining predictive. The resulting fits seem to present constraints on the
late stage evolution of the fireball, including the tantalizing possibility
that the QCD chiral transition influences the yields at sqrt(S)=2700 GeV and
the QCD critical point those at sqrt(S)=17.3 GeV
A full quantal theory of one-neutron halo breakup reactions
We present a theory of one-neutron halo breakup reactions within the
framework of post-form distorted wave Born approximation wherein pure Coulomb,
pure nuclear and their interference terms are treated consistently in a single
setup. This formalism is used to study the breakup of one-neutron halo nucleus
11Be on several targets of different masses. We investigate the role played by
the pure Coulomb, pure nuclear and the Coulomb-nuclear interference terms by
calculating several reaction observables. The Coulomb-nuclear interference
terms are found to be important for more exclusive observables.Comment: 22 pages latex, 9 figures, submitted to Phy. Rev.
Games on graphs with a public signal monitoring
We study pure Nash equilibria in games on graphs with an imperfect monitoring
based on a public signal. In such games, deviations and players responsible for
those deviations can be hard to detect and track. We propose a generic
epistemic game abstraction, which conveniently allows to represent the
knowledge of the players about these deviations, and give a characterization of
Nash equilibria in terms of winning strategies in the abstraction. We then use
the abstraction to develop algorithms for some payoff functions.Comment: 28 page
Proper Motions of PSRs B1757-24 and B1951+32: Implications for Ages and Associations
Over the last decade, considerable effort has been made to measure the proper
motions of the pulsars B1757-24 and B1951+32 in order to establish or refute
associations with nearby supernova remnants and to understand better the
complicated geometries of their surrounding nebulae. We present proper motion
measurements of both pulsars with the Very Large Array, increasing the time
baselines of the measurements from 3.9 yr to 6.5 yr and from 12.0 yr to 14.5
yr, respectively, compared to previous observations. We confirm the
non-detection of proper motion of PSR B1757-24, and our measurement of (mu_a,
mu_d) = (-11 +/- 9, -1 +/- 15) mas yr^{-1} confirms that the association of PSR
B1757-24 with SNR G5.4-1.2 is unlikely for the pulsar characteristic age of
15.5 kyr, although an association can not be excluded for a significantly
larger age. For PSR B1951+32, we measure a proper motion of (mu_a, mu_d) =
(-28.8 +/- 0.9, -14.7 +/- 0.9) mas yr^{-1}, reducing the uncertainty in the
proper motion by a factor of two compared to previous results. After correcting
to the local standard of rest, the proper motion indicates a kinetic age of ~51
kyr for the pulsar, assuming it was born near the geometric center of the
supernova remnant. The radio-bright arc of emission along the pulsar proper
motion vector shows time-variable structure, but moves with the pulsar at an
approximately constant separation ~2.5", lending weight to its interpretation
as a shock structure driven by the pulsar.Comment: LaTeX file uses emulateapj.cls; 7 pages, 4 figures, to be published
ApJ February 10, 2008, v674 p271-278. Revision reflects journal formatting;
there are no substantial revision
Phases, many-body entropy measures and coherence of interacting bosons in optical lattices
Already a few bosons with contact interparticle interactions in small optical
lattices feature a variety of quantum phases: superfluid, Mott-insulator and
fermionized Tonks gases can be probed in such systems. To detect these phases
-- pivotal for both experiment and theory -- as well as their many-body
properties we analyze several distinct measures for the one-body and many-body
Shannon information entropies. We exemplify the connection of these entropies
with spatial correlations in the many-body state by contrasting them to the
Glauber normalized correlation functions. To obtain the ground-state for
lattices with commensurate filling (i.e. an integer number of particles per
site) for the full range of repulsive interparticle interactions we utilize the
multiconfigurational time-dependent Hartree method for bosons (MCTDHB) in order
to solve the many-boson Schr\"odinger equation. We demonstrate that all
emergent phases -- the superfluid, the Mott insulator, and the fermionized gas
can be characterized equivalently by our many-body entropy measures and by
Glauber's normalized correlation functions. In contrast to our many-body
entropy measures, single-particle entropy cannot capture these transitions.Comment: 11 pages, 7 figures, software available at http://ultracold.or
- …
