17,846 research outputs found
Flight test techniques for wake-vortex minimization studies
Flight test techniques developed for use in a study of wake turbulence and used recently in flight studies of wake minimization methods are discussed. Flow visualization was developed as a technique for qualitatively assessing minimization methods and is required in flight test procedures for making quantitative measurements. The quantitative techniques are the measurement of the upset dynamics of an aircraft encountering the wake and the measurement of the wake velocity profiles. Descriptions of the instrumentation and the data reduction and correlation methods are given
ICF core sets for low back pain: do they include what matters to patients?
To investigate whether the International Classification of Functioning Disability and Health (ICF) Core Sets for low back pain encompass the key functional problems of patients
Wake vortex technology
A brief overview of the highlights of NASA's wake vortex minimization program is presented. The significant results of this program are summarized as follows: (1) it is technically feasible to reduce significantly the rolling upset created on a trailing aircraft; (2) the basic principles or methods by which reduction in the vortex strength can be achieved have been identified; and (3) an analytical capability for investigating aircraft vortex wakes has been developed
Characteristics of wake vortex generated by a Boeing 727 jet transport during two-segment and normal ILS approach flight paths
A series of flight tests was conducted to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Twelve flights of the B727, which was equipped with smoke generators for vortex marking, were flown and its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) and a Piper Twin Comanche (PA-30). Location of the B727 vortex during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 m(300 ft) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex but as the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 n.mi. would be a minimum separation distance at which roll control of light aircraft (less than 5,670 kg (12,500 lb) could be maintained during parallel encounters of the B727's landing configuration wake. This minimum separation distance is generally in scale with results determined from previous tests of other aircraft using the small roll control criteria
Systems comparison of direct and relay link data return modes for advanced planetary missions
Advanced planetary missions using direct and relay link data return mode
- …