206 research outputs found
Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions
We experimentally investigate and utilize electrothermal feedback in a
microwave nanobolometer based on a normal-metal
(\mbox{Au}_{x}\mbox{Pd}_{1-x}) nanowire with proximity-induced
superconductivity. The feedback couples the temperature and the electrical
degrees of freedom in the nanowire, which both absorbs the incoming microwave
radiation, and transduces the temperature change into a radio-frequency
electrical signal. We tune the feedback in situ and access both positive and
negative feedback regimes with rich nonlinear dynamics. In particular, strong
positive feedback leads to the emergence of two metastable electron temperature
states in the millikelvin range. We use these states for efficient threshold
detection of coherent 8.4 GHz microwave pulses containing approximately 200
photons on average, corresponding to 1.1 \mbox{ zJ} \approx 7.0 \mbox{ meV}
of energy
Decline of auditory-motor speech processing in older adults with hearing loss
Older adults often experience difficulties in understanding speech, partly because of age-related hearing loss. In young adults, activity of the left articulatory motor cortex is enhanced and it interacts with the auditory cortex via the left-hemispheric dorsal stream during speech processing. Little is known about the effect of ageing and age-related hearing loss on this auditory-motor interaction and speech processing in the articulatory motor cortex. It has been proposed that up-regulation of the motor system during speech processing could compensate for hearing loss and auditory processing deficits in older adults. Alternatively, age-related auditory deficits could reduce and distort the input from the auditory cortex to the articulatory motor cortex, suppressing recruitment of the motor system during listening to speech. The aim of the present study was to investigate the effects of ageing and age-related hearing loss on the excitability of the tongue motor cortex during listening to spoken sentences using transcranial magnetic stimulation and electromyography. Our results show that the excitability of the tongue motor cortex was facilitated during listening to speech in young and older adults with normal hearing. This facilitation was significantly reduced in older adults with hearing loss. These findings suggest a decline of auditory-motor processing of speech in adults with age-related hearing loss
Specificity of motor contributions to auditory statistical learning
Statistical learning is the ability to extract patterned information from continuous sensory signals. Recent evidence suggests that auditory-motor mechanisms play an important role in auditory statistical learning from speech signals. The question remains whether auditory-motor mechanisms support such learning generally or in a domain-specific manner. In Experiment 1, we tested the specificity of motor processes contributing to learning patterns from speech sequences. Participants either whispered or clapped their hands while listening to structured speech. In Experiment 2, we focused on auditory specificity, testing whether whispering equally affects learning patterns from speech and non-speech sequences. Finally, in Experiment 3, we examined whether learning patterns from speech and non-speech sequences are correlated. Whispering had a stronger effect than clapping on learning patterns from speech sequences in Experiment 1. Moreover, whispering impaired statistical learning more strongly from speech than non-speech sequences in Experiment 2. Interestingly, while participants in the non-speech tasks spontaneously synchronized their motor movements with the auditory stream more than participants in the speech tasks, the effect of the motor movements on learning was stronger in the speech domain. Finally, no correlation between speech and non-speech learning was observed. Overall, our findings support the idea that learning statistical patterns from speech versus non-speech relies on segregated mechanisms, and that the speech motor system contributes to auditory statistical learning in a highly specific manner
Conservation law of operator current in open quantum systems
We derive a fundamental conservation law of operator current for master
equations describing reduced quantum systems. If this law is broken, the
temporal integral of the current operator of an arbitrary system observable
does not yield in general the change of that observable in the evolution. We
study Lindblad-type master equations as examples and prove that the application
of the secular approximation during their derivation results in a violation of
the conservation law. We show that generally any violation of the law leads to
artificial corrections to the complete quantum dynamics, thus questioning the
accuracy of the particular master equation.Comment: 5 pages, final versio
Equivalent qubit dynamics under classical and quantum noise
We study the dynamics of quantum systems under classical and quantum noise,
focusing on decoherence in qubit systems. Classical noise is described by a
random process leading to a stochastic temporal evolution of a closed quantum
system, whereas quantum noise originates from the coupling of the microscopic
quantum system to its macroscopic environment. We derive deterministic master
equations describing the average evolution of the quantum system under
classical continuous-time Markovian noise and two sets of master equations
under quantum noise. Strikingly, these three equations of motion are shown to
be equivalent in the case of classical random telegraph noise and proper
quantum environments. Hence fully quantum-mechanical models within the Born
approximation can be mapped to a quantum system under classical noise.
Furthermore, we apply the derived equations together with pulse optimization
techniques to achieve high-fidelity one-qubit operations under random telegraph
noise, and hence fight decoherence in these systems of great practical
interest.Comment: 5 pages, 2 figures; converted to PRA format, added Fig. 2, corrected
typo
Splitting times of doubly quantized vortices in dilute Bose-Einstein condensates
Recently, the splitting of a topologically created doubly quantized vortex
into two singly quantized vortices was experimentally investigated in dilute
atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett.
93, 160406 (2004)]. In particular, the dependency of the splitting time on the
peak particle density was studied. We present results of theoretical
simulations which closely mimic the experimental set-up. Contrary to previous
theoretical studies, claiming that thermal excitations are the essential
mechanism in initiating the splitting, we show that the combination of
gravitational sag and time dependency of the trapping potential alone suffices
to split the doubly quantized vortex in time scales which are in good agreement
with the experiments. We also study the dynamics of the resulting singly
quantized vortices which typically intertwine--especially, a peculiar vortex
chain structure appears for certain parameter values.Comment: 5 pages, 5 figure
Splitting of a doubly quantized vortex through intertwining in Bose-Einstein condensates
The stability of doubly quantized vortices in dilute Bose-Einstein
condensates of 23Na is examined at zero temperature. The eigenmode spectrum of
the Bogoliubov equations for a harmonically trapped cigar-shaped condensate is
computed and it is found that the doubly quantized vortex is spectrally
unstable towards dissection into two singly quantized vortices. By numerically
solving the full three-dimensional time-dependent Gross-Pitaevskii equation, it
is found that the two singly quantized vortices intertwine before decaying.
This work provides an interpretation of recent experiments [A. E. Leanhardt et
al. Phys. Rev. Lett. 89, 190403 (2002)].Comment: 4 pages, 3 figures (to be published in PRA
Quantum circuits with uniformly controlled one-qubit gates
Uniformly controlled one-qubit gates are quantum gates which can be
represented as direct sums of two-dimensional unitary operators acting on a
single qubit. We present a quantum gate array which implements any n-qubit gate
of this type using at most 2^{n-1} - 1 controlled-NOT gates, 2^{n-1} one-qubit
gates and a single diagonal n-qubit gate. The circuit is based on the so-called
quantum multiplexor, for which we provide a modified construction. We
illustrate the versatility of these gates by applying them to the decomposition
of a general n-qubit gate and a local state preparation procedure. Moreover, we
study their implementation using only nearest-neighbor gates. We give upper
bounds for the one-qubit and controlled-NOT gate counts for all the
aforementioned applications. In all four cases, the proposed circuit topologies
either improve on or achieve the previously reported upper bounds for the gate
counts. Thus, they provide the most efficient method for general gate
decompositions currently known.Comment: 8 pages, 10 figures. v2 has simpler notation and sharpens some
result
- …