6,287 research outputs found

    Electron correlations in a C20_{20} fullerene cluster: A lattice density-functional study of the Hubbard model

    Full text link
    The ground-state properties of C20_{20} fullerene clusters are determined in the framework of the Hubbard model by using lattice density-functional theory (LDFT) and scaling approximations to the interaction-energy functional. Results are given for the ground-state energy, kinetic and Coulomb energies, local magnetic moments, and charge-excitation gap, as a function of the Coulomb repulsion U/tU/t and for electron or hole doping δ\delta close half-band filling (δ1|\delta| \le 1). The role of electron correlations is analyzed by comparing the LDFT results with fully unrestricted Hartree-Fock (UHF) calculations which take into account possible noncollinear arrangements of the local spin-polarizations. The consequences of the spin-density-wave symmetry breaking, often found in UHF, and the implications of this study for more complex fullerene structures are discussed.Comment: 18 pages, 7 figures, Submitted to PR

    Barotropic FRW cosmologies with a Dirac-like parameter

    Get PDF
    Using the known connection between Schroedinger-like equations and Dirac-like equations in the supersymmetric context, we discuss an extension of FRW barotropic cosmologies in which a Dirac mass-like parameter is introduced. New Hubble cosmological parameters H_K(eta) depending on the Dirac-like parameter are plotted and compared with the standard Hubble case H_0(eta). The new H_K(eta) are complex quantities. The imaginary part is a supersymmetric way of introducing dissipation and instabilities in the barotropic FRW hydrodynamicsComment: 7 pages, 4 figures, accepted at MPL

    Riccati nonhermiticity with application to the Morse potential

    Full text link
    A supersymmetric one-dimensional matrix procedure similar to relationships of the same type between Dirac and Schrodinger equations in particle physics is described at the general level. By this means we are able to introduce a nonhermitic Hamiltonian having the imaginary part proportional to the solution of a Riccati equation of the Witten type. The procedure is applied to the exactly solvable Morse potential introducing in this way the corresponding nonhermitic Morse problem. A possible application is to molecular diffraction in evanescent waves over nanostructured surfacesComment: 8 pages, 4 figure

    Classical harmonic oscillator with Dirac-like parameters and possible applications

    Full text link
    We obtain a class of parametric oscillation modes that we call K-modes with damping and absorption that are connected to the classical harmonic oscillator modes through the "supersymmetric" one-dimensional matrix procedure similar to relationships of the same type between Dirac and Schroedinger equations in particle physics. When a single coupling parameter, denoted by K, is used, it characterizes both the damping and the dissipative features of these modes. Generalizations to several K parameters are also possible and lead to analytical results. If the problem is passed to the physical optics (and/or acoustics) context by switching from the oscillator equation to the corresponding Helmholtz equation, one may hope to detect the K-modes as waveguide modes of specially designed waveguides and/or cavitiesComment: 14 pages, 9 figures, revised, accepted at J. Phys.

    Identification of two novel mutations in CDHR1 in consanguineous Spanish families with autosomal recessive retinal dystrophy.

    Get PDF
    Inherited retinal dystrophies present extensive phenotypic and genetic heterogeneity, posing a challenge for patients' molecular and clinical diagnoses. In this study, we wanted to clinically characterize and investigate the molecular etiology of an atypical form of autosomal recessive retinal dystrophy in two consanguineous Spanish families. Affected members of the respective families exhibited an array of clinical features including reduced visual acuity, photophobia, defective color vision, reduced or absent ERG responses, macular atrophy and pigmentary deposits in the peripheral retina. Genetic investigation included autozygosity mapping coupled with exome sequencing in the first family, whereas autozygome-guided candidate gene screening was performed by means of Sanger DNA sequencing in the second family. Our approach revealed nucleotide changes in CDHR1; a homozygous missense variant (c.1720C > G, p.P574A) and a homozygous single base transition (c.1485 + 2T > C) affecting the canonical 5' splice site of intron 13, respectively. Both changes co-segregated with the disease and were absent among cohorts of unrelated control individuals. To date, only five mutations in CDHR1 have been identified, all resulting in premature stop codons leading to mRNA nonsense mediated decay. Our work reports two previously unidentified homozygous mutations in CDHR1 further expanding the mutational spectrum of this gene

    Improved tensor-product expansions for the two-particle density matrix

    Full text link
    We present a new density-matrix functional within the recently introduced framework for tensor-product expansions of the two-particle density matrix. It performs well both for the homogeneous electron gas as well as atoms. For the homogeneous electron gas, it performs significantly better than all previous density-matrix functionals, becoming very accurate for high densities and outperforming Hartree-Fock at metallic valence electron densities. For isolated atoms and ions, it is on a par with previous density-matrix functionals and generalized gradient approximations to density-functional theory. We also present analytic results for the correlation energy in the low density limit of the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure

    A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice.

    Get PDF
    Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype

    The 2HWC HAWC Observatory Gamma Ray Catalog

    Full text link
    We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
    corecore