6,287 research outputs found
Electron correlations in a C fullerene cluster: A lattice density-functional study of the Hubbard model
The ground-state properties of C fullerene clusters are determined in
the framework of the Hubbard model by using lattice density-functional theory
(LDFT) and scaling approximations to the interaction-energy functional. Results
are given for the ground-state energy, kinetic and Coulomb energies, local
magnetic moments, and charge-excitation gap, as a function of the Coulomb
repulsion and for electron or hole doping close half-band
filling (). The role of electron correlations is analyzed by
comparing the LDFT results with fully unrestricted Hartree-Fock (UHF)
calculations which take into account possible noncollinear arrangements of the
local spin-polarizations. The consequences of the spin-density-wave symmetry
breaking, often found in UHF, and the implications of this study for more
complex fullerene structures are discussed.Comment: 18 pages, 7 figures, Submitted to PR
Barotropic FRW cosmologies with a Dirac-like parameter
Using the known connection between Schroedinger-like equations and Dirac-like
equations in the supersymmetric context, we discuss an extension of FRW
barotropic cosmologies in which a Dirac mass-like parameter is introduced. New
Hubble cosmological parameters H_K(eta) depending on the Dirac-like parameter
are plotted and compared with the standard Hubble case H_0(eta). The new
H_K(eta) are complex quantities. The imaginary part is a supersymmetric way of
introducing dissipation and instabilities in the barotropic FRW hydrodynamicsComment: 7 pages, 4 figures, accepted at MPL
Riccati nonhermiticity with application to the Morse potential
A supersymmetric one-dimensional matrix procedure similar to relationships of
the same type between Dirac and Schrodinger equations in particle physics is
described at the general level. By this means we are able to introduce a
nonhermitic Hamiltonian having the imaginary part proportional to the solution
of a Riccati equation of the Witten type. The procedure is applied to the
exactly solvable Morse potential introducing in this way the corresponding
nonhermitic Morse problem. A possible application is to molecular diffraction
in evanescent waves over nanostructured surfacesComment: 8 pages, 4 figure
Classical harmonic oscillator with Dirac-like parameters and possible applications
We obtain a class of parametric oscillation modes that we call K-modes with
damping and absorption that are connected to the classical harmonic oscillator
modes through the "supersymmetric" one-dimensional matrix procedure similar to
relationships of the same type between Dirac and Schroedinger equations in
particle physics. When a single coupling parameter, denoted by K, is used, it
characterizes both the damping and the dissipative features of these modes.
Generalizations to several K parameters are also possible and lead to
analytical results. If the problem is passed to the physical optics (and/or
acoustics) context by switching from the oscillator equation to the
corresponding Helmholtz equation, one may hope to detect the K-modes as
waveguide modes of specially designed waveguides and/or cavitiesComment: 14 pages, 9 figures, revised, accepted at J. Phys.
Identification of two novel mutations in CDHR1 in consanguineous Spanish families with autosomal recessive retinal dystrophy.
Inherited retinal dystrophies present extensive phenotypic and genetic heterogeneity, posing a challenge for patients' molecular and clinical diagnoses. In this study, we wanted to clinically characterize and investigate the molecular etiology of an atypical form of autosomal recessive retinal dystrophy in two consanguineous Spanish families. Affected members of the respective families exhibited an array of clinical features including reduced visual acuity, photophobia, defective color vision, reduced or absent ERG responses, macular atrophy and pigmentary deposits in the peripheral retina. Genetic investigation included autozygosity mapping coupled with exome sequencing in the first family, whereas autozygome-guided candidate gene screening was performed by means of Sanger DNA sequencing in the second family. Our approach revealed nucleotide changes in CDHR1; a homozygous missense variant (c.1720C > G, p.P574A) and a homozygous single base transition (c.1485 + 2T > C) affecting the canonical 5' splice site of intron 13, respectively. Both changes co-segregated with the disease and were absent among cohorts of unrelated control individuals. To date, only five mutations in CDHR1 have been identified, all resulting in premature stop codons leading to mRNA nonsense mediated decay. Our work reports two previously unidentified homozygous mutations in CDHR1 further expanding the mutational spectrum of this gene
Improved tensor-product expansions for the two-particle density matrix
We present a new density-matrix functional within the recently introduced
framework for tensor-product expansions of the two-particle density matrix. It
performs well both for the homogeneous electron gas as well as atoms. For the
homogeneous electron gas, it performs significantly better than all previous
density-matrix functionals, becoming very accurate for high densities and
outperforming Hartree-Fock at metallic valence electron densities. For isolated
atoms and ions, it is on a par with previous density-matrix functionals and
generalized gradient approximations to density-functional theory. We also
present analytic results for the correlation energy in the low density limit of
the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure
A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice.
Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype
The 2HWC HAWC Observatory Gamma Ray Catalog
We present the first catalog of TeV gamma-ray sources realized with the
recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the
most sensitive wide field-of-view TeV telescope currently in operation, with a
1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an
instantaneous field of view >1.5 sr and >90% duty cycle, it continuously
surveys and monitors the sky for gamma ray energies between hundreds GeV and
tens of TeV.
HAWC is located in Mexico at a latitude of 19 degree North and was completed
in March 2015. Here, we present the 2HWC catalog, which is the result of the
first source search realized with the complete HAWC detector. Realized with 507
days of data and represents the most sensitive TeV survey to date for such a
large fraction of the sky. A total of 39 sources were detected, with an
expected contamination of 0.5 due to background fluctuation. Out of these
sources, 16 are more than one degree away from any previously reported TeV
source. The source list, including the position measurement, spectrum
measurement, and uncertainties, is reported. Seven of the detected sources may
be associated with pulsar wind nebulae, two with supernova remnants, two with
blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
- …