425 research outputs found

    Generic Criticality in a Model of Evolution

    Full text link
    Using Monte Carlo simulations, we show that for a certain model of biological evolution, which is driven by non-extremal dynamics, active and absorbing phases are separated by a critical phase. In this phase both the density of active sites ρ(t)\rho(t) and the survival probability of spreading P(t)P(t) decay as tδt^{-\delta}, where δ0.5\delta \sim 0.5. At the critical point, which separates the active and critical phases, δ0.29\delta\sim 0.29, which suggests that this point belongs to the so-called parity-conserving universality class. The model has infinitely many absorbing states and, except for a single point, has no conservation law.Comment: 4 pages, 3 figures, minor grammatical change

    Travelling Salesman Problem with a Center

    Full text link
    We study a travelling salesman problem where the path is optimized with a cost function that includes its length LL as well as a certain measure CC of its distance from the geometrical center of the graph. Using simulated annealing (SA) we show that such a problem has a transition point that separates two phases differing in the scaling behaviour of LL and CC, in efficiency of SA, and in the shape of minimal paths.Comment: 4 pages, minor changes, accepted in Phys.Rev.

    Novel glassy behavior in a ferromagnetic p-spin model

    Full text link
    Recent work has suggested the existence of glassy behavior in a ferromagnetic model with a four-spin interaction. Motivated by these findings, we have studied the dynamics of this model using Monte Carlo simulations with particular attention being paid to two-time quantities. We find that the system shares many features in common with glass forming liquids. In particular, the model exhibits: (i) a very long-lived metastable state, (ii) autocorrelation functions that show stretched exponential relaxation, (iii) a non-equilibrium timescale that appears to diverge at a well defined temperature, and (iv) low temperature aging behaviour characteristic of glasses.Comment: 6 pages, 5 figure

    Dimensional reduction in a model with infinitely many absorbing states

    Full text link
    Using Monte Carlo method we study a two-dimensional model with infinitely many absorbing states. Our estimation of the critical exponent beta=0.273(5) suggests that the model belongs to the (1+1) rather than (2+1) directed-percolation universality class. We also show that for a large class of absorbing states the dynamic Monte Carlo method leads to spurious dynamical transitions.Comment: 6 pages, 4 figures, Phys.Rev. E, Dec. 199

    Poincar\'{e} cycle of a multibox Ehrenfest urn model with directed transport

    Full text link
    We propose a generalized Ehrenfest urn model of many urns arranged periodically along a circle. The evolution of the urn model system is governed by a directed stochastic operation. Method for solving an NN-ball, MM-urn problem of this model is presented. The evolution of the system is studied in detail. We find that the average number of balls in a certain urn oscillates several times before it reaches a stationary value. This behavior seems to be a peculiar feature of this directed urn model. We also calculate the Poincar\'{e} cycle, i.e., the average time interval required for the system to return to its initial configuration. The result can be easily understood by counting the total number of all possible microstates of the system.Comment: 10 pages revtex file with 7 eps figure

    Mean Field Renormalization Group for the Boundary Magnetization of Strip Clusters

    Full text link
    We analyze in some detail a recently proposed transfer matrix mean field approximation which yields the exact critical point for several two dimensional nearest neighbor Ising models. For the square lattice model we show explicitly that this approximation yields not only the exact critical point, but also the exact boundary magnetization of a semi--infinite Ising model, independent of the size of the strips used. Then we develop a new mean field renormalization group strategy based on this approximation and make connections with finite size scaling. Applying our strategy to the quadratic Ising and three--state Potts models we obtain results for the critical exponents which are in excellent agreement with the exact ones. In this way we also clarify some advantages and limitations of the mean field renormalization group approach.Comment: 16 pages (plain TeX) + 8 figures (PostScript, appended), POLFIS-TH.XX/9

    Phase transitions in nonequilibrium d-dimensional models with q absorbing states

    Full text link
    A nonequilibrium Potts-like model with qq absorbing states is studied using Monte Carlo simulations. In two dimensions and q=3q=3 the model exhibits a discontinuous transition. For the three-dimensional case and q=2q=2 the model exhibits a continuous, transition with β=1\beta=1 (mean-field). Simulations are inconclusive, however, in the two-dimensional case for q=2q=2. We suggest that in this case the model is close to or at the crossing point of lines separating three different types of phase transitions. The proposed phase diagram in the (q,d)(q,d) plane is very similar to that of the equilibrium Potts model. In addition, our simulations confirm field-theory prediction that in two dimensions a branching-annihilating random walk model without parity conservation belongs to the directed percolation universality class.Comment: 8 pages, figures included, accepted in Phys.Rev.

    Naming Game on Adaptive Weighted Networks

    Full text link
    We examine a naming game on an adaptive weighted network. A weight of connection for a given pair of agents depends on their communication success rate and determines the probability with which the agents communicate. In some cases, depending on the parameters of the model, the preference toward successfully communicating agents is basically negligible and the model behaves similarly to the naming game on a complete graph. In particular, it quickly reaches a single-language state, albeit some details of the dynamics are different from the complete-graph version. In some other cases, the preference toward successfully communicating agents becomes much more relevant and the model gets trapped in a multi-language regime. In this case gradual coarsening and extinction of languages lead to the emergence of a dominant language, albeit with some other languages still being present. A comparison of distribution of languages in our model and in the human population is discussed.Comment: 22 pages, accepted in Artificial Lif

    Critical phase of a magnetic hard hexagon model on triangular lattice

    Full text link
    We introduce a magnetic hard hexagon model with two-body restrictions for configurations of hard hexagons and investigate its critical behavior by using Monte Carlo simulations and a finite size scaling method for discreate values of activity. It turns out that the restrictions bring about a critical phase which the usual hard hexagon model does not have. An upper and a lower critical value of the discrete activity for the critical phase of the newly proposed model are estimated as 4 and 6, respectively.Comment: 11 pages, 8 Postscript figures, uses revtex.st

    Phase transition and selection in a four-species cyclic Lotka-Volterra model

    Full text link
    We study a four species ecological system with cyclic dominance whose individuals are distributed on a square lattice. Randomly chosen individuals migrate to one of the neighboring sites if it is empty or invade this site if occupied by their prey. The cyclic dominance maintains the coexistence of all the four species if the concentration of vacant sites is lower than a threshold value. Above the treshold, a symmetry breaking ordering occurs via growing domains containing only two neutral species inside. These two neutral species can protect each other from the external invaders (predators) and extend their common territory. According to our Monte Carlo simulations the observed phase transition is equivalent to those found in spreading models with two equivalent absorbing states although the present model has continuous sets of absorbing states with different portions of the two neutral species. The selection mechanism yielding symmetric phases is related to the domain growth process whith wide boundaries where the four species coexist.Comment: 4 pages, 5 figure
    corecore