168 research outputs found
Patologia timica e miastenia gravis
no abstrac
Internal femoral osteosynthesis after external fixation in multiple-trauma patients
In this study the authors evaluate the results of internal synthesis of femoral fractures in polytraumatised patients initially treated by external fixation (EF). From January 2002 to December 2005, 39 femurs in 37 polytraumatised patients (average age 34.2 years, range 18-44) with closed fractures and an ISS>20 were initially treated with EF. There were three groups: Group A, 13 cases when conversion to internal osteosynthesis occurred after 4-7 days (average 5.6 days); Group B, 11 cases with a 4-6-month interval before internal osteosynthesis, and after investigation using MRI and scintigraphy with labelled leucocytes; Group C, the remaining cases treated definitively with EF. Time of healing, lower limb function, time of return to previous activities and short and long-term complications were evaluated at the follow-up. The average time of follow-up was 23 months. In Group A the time of bone healing was 123 days; there were no events of embolism but one case of pseudoarthrosis and one case of instrument failure. In Group B the time of bone healing was 274 days, with one case of pseudoarthrosis and one case of deep infection. In Group C the average healing time was 193 days, with 3 cases of screw (half-pin) osteolysis. Functional recovery was delayed by the presence of other fractures. EF is a simple, quick and safe procedure to stabilise fractures in polytraumatised patients. According to damage control orthopaedic (DCO) concepts, it is possible to replace EF with internal synthesis after an interval as this reduces the risks of internal osteosynthesis when performed in the emergency period. EF can also be maintained as definitive treatment but should a change to internal synthesis be needed, it is possible to do it safely after excluding bone infection
Hierarchical Cluster Analysis to Aid Diagnostic Image Data Visualization of MS and Other Medical Imaging Modalities
Perceiving abnormal regions in the images of different medical modalities plays a crucial role in diagnosis
and subsequent treatment planning. In medical images to visually perceive abnormalities’ extent and
boundaries requires substantial experience. Consequently, manually drawn region of interest (ROI) to
outline boundaries of abnormalities suffers from limitations of human perception leading to inter-observer
variability. As an alternative to human drawn ROI, it is proposed the use of a computer-based segmenta-
tion algorithm to segment digital medical image data.
Hierarchical Clustering-based Segmentation (HCS) process is a generic unsupervised segmentation
process that can be used to segment dissimilar regions in digital images. HCS process generates a hierarchy
of segmented images by partitioning an image into its constituent regions at hierarchical levels of allowable
dissimilarity between its different regions. The hierarchy represents the continuous merging of similar,
spatially adjacent, and/or disjoint regions as the allowable threshold value of dissimilarity between regions,
for merging, is gradually increased.
This chapter discusses in detail first the implementation of the HCS process, second the implementa-
tion details of how the HCS process is used for the presentation of multi-modal imaging data (MALDI and
MRI) of a biological sample, third the implementation details of how the process is used as a perception
aid for X-ray mammogram readers, and finally the implementation details of how it is used as an interpreta-
tion aid for the interpretation of Multi-parametric Magnetic Resonance Imaging (mpMRI) of the Prostate
Experimental iodine-125 seed irradiation of intracerebral brain tumors in nude mice
<p>Abstract</p> <p>Background</p> <p>High-dose radiotherapy is standard treatment for patients with brain cancer. However, in preclinical research external beam radiotherapy is limited to heterotopic murine models– high-dose radiotherapy to the murine head is fatal due to radiation toxicity. Therefore, we developed a stereotactic brachytherapy mouse model for high-dose focal irradiation of experimental intracerebral (orthotopic) brain tumors.</p> <p>Methods</p> <p>Twenty-one nude mice received a hollow guide-screw implanted in the skull. After three weeks, 5 × 10<sup>5 </sup>U251-NG2 human glioblastoma cells were injected. Five days later, a 2 mCi iodine-125 brachytherapy seed was inserted through the guide-screw in 11 randomly selected mice; 10 mice received a sham seed. Mice were euthanized when severe neurological or physical symptoms occurred. The cumulative irradiation dose 5 mm below the active iodine-125 seeds was 23.0 Gy after 13 weeks (BED<sub>tumor </sub>= 30.6 Gy).</p> <p>Results</p> <p>In the sham group, 9/10 animals (90%) showed signs of lethal tumor progression within 6 weeks. In the experimental group, 2/11 mice (18%) died of tumor progression within 13 weeks. Acute side effects in terms of weight loss or neurological symptoms were not observed in the irradiated animals.</p> <p>Conclusion</p> <p>The intracerebral implantation of an iodine-125 brachytherapy seed through a stereotactic guide-screw in the skull of mice with implanted brain tumors resulted in a significantly prolonged survival, caused by high-dose irradiation of the brain tumor that is biologically comparable to high-dose fractionated radiotherapy– without fatal irradiation toxicity. This is an excellent mouse model for testing orthotopic brain tumor therapies in combination with radiation therapy.</p
MRI in multiple myeloma : a pictorial review of diagnostic and post-treatment findings
Magnetic resonance imaging (MRI) is increasingly being used in the diagnostic work-up of patients with multiple myeloma. Since 2014, MRI findings are included in the new diagnostic criteria proposed by the International Myeloma Working Group. Patients with smouldering myeloma presenting with more than one unequivocal focal lesion in the bone marrow on MRI are considered having symptomatic myeloma requiring treatment, regardless of the presence of lytic bone lesions. However, bone marrow evaluation with MRI offers more than only morphological information regarding the detection of focal lesions in patients with MM. The overall performance of MRI is enhanced by applying dynamic contrast-enhanced MRI and diffusion weighted imaging sequences, providing additional functional information on bone marrow vascularization and cellularity. This pictorial review provides an overview of the most important imaging findings in patients with monoclonal gammopathy of undetermined significance, smouldering myeloma and multiple myeloma, by performing a 'total' MRI investigation with implications for the diagnosis, staging and response assessment. Main message aEuro cent Conventional MRI diagnoses multiple myeloma by assessing the infiltration pattern. aEuro cent Dynamic contrast-enhanced MRI diagnoses multiple myeloma by assessing vascularization and perfusion. aEuro cent Diffusion weighted imaging evaluates bone marrow composition and cellularity in multiple myeloma. aEuro cent Combined morphological and functional MRI provides optimal bone marrow assessment for staging. aEuro cent Combined morphological and functional MRI is of considerable value in treatment follow-up
Early Response Prediction of Multiparametric Functional MRI and F-18-FDG-PET in Patients with Head and Neck Squamous Cell Carcinoma Treated with (Chemo)Radiation
Background: Patients with locally-advanced head and neck squamous cell carcinoma (HNSCC) have variable responses to (chemo)radiotherapy. A reliable prediction of outcomes allows for enhancing treatment efficacy and follow-up monitoring. Methods: Fifty-seven histopathologically-proven HNSCC patients with curative (chemo)radiotherapy were prospectively included. All patients had an MRI (DW,-IVIM, DCE-MRI) and 18 F-FDG-PET/CT before and 10 days after start-treatment (intratreatment). Primary tumor functional imaging parameters were extracted. Univariate and multivariate analysis were performed to construct prognostic models and risk stratification for 2 year locoregional recurrence-free survival (LRFFS), distant metastasis-free survival (DMFS) and overall survival (OS). Model performance was measured by the cross-validated area under the receiver operating characteristic curve (AUC). Results: The best LRFFS model contained the pretreatment imaging parameters ADC_kurtosis, K ep and SUV_peak, and intratreatment imaging parameters change (∆) ∆-ADC_skewness, ∆-f, ∆-SUV_peak and ∆-total lesion glycolysis (TLG) (AUC = 0.81). Clinical parameters did not enhance LRFFS prediction. The best DMFS model contained pretreatment ADC_kurtosis and SUV_peak (AUC = 0.88). The best OS model contained gender, HPV-status, N-stage, pretreatment ADC_skewness, D, f, metabolic-active tumor volume (MATV), SUV_mean and SUV_peak (AUC = 0.82). Risk stratification in high/medium/low risk was significantly prognostic for LRFFS (p = 0.002), DMFS (p < 0.001) and OS (p = 0.003). Conclusions: Intratreatment functional imaging parameters capture early tumoral changes that only provide prognostic information regarding LRFFS. The best LRFFS model consisted of pretreatment, intratreatment and ∆ functional imaging parameters; the DMFS model consisted of only pretreatment functional imaging parameters, and the OS model consisted ofHPV-status, gender and only pretreatment functional imaging parameters. Accurate clinically applicable risk stratification calculators can enable personalized treatment (adap-tation) management, early on during treatment, improve counseling and enhance patient-specific post-therapy monitoring
Quinoa Phenotyping Methodologies: An International Consensus
Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials
across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher throughput
post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal
crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally
Imaging findings in craniofacial childhood rhabdomyosarcoma
Rhabdomyosarcoma (RMS) is the commonest paediatric soft-tissue sarcoma constituting 3–5% of all malignancies in childhood. RMS has a predilection for the head and neck area and tumours in this location account for 40% of all childhood RMS cases. In this review we address the clinical and imaging presentations of craniofacial RMS, discuss the most appropriate imaging techniques, present characteristic imaging features and offer an overview of differential diagnostic considerations. Post-treatment changes will be briefly addressed
3066 consecutive Gamma Nails. 12 years experience at a single centre
<p>Abstract</p> <p>Background</p> <p>Fixation of trochanteric hip fractures using the Gamma Nail has been performed since 1988 and is today well established and wide-spread. However, a number of reports have raised serious concerns about the implant's complication rate. The main focus has been the increased risk of a subsequent femoral shaft fracture and some authors have argued against its use despite other obvious advantages, when this implant is employed.</p> <p>Through access to a uniquely large patient data base available, which is available for analysis of trochanteric fractures; we have been able to evaluate the performance of the Gamma Nail over a twelve year period.</p> <p>Methods</p> <p>3066 consecutive patients were treated for trochanteric fractures using Gamma Nails between 1990 and 2002 at the Centre de Traumatologie et de l'Orthopedie (CTO), Strasbourg, France. These patients were retrospectively analysed. Information on epidemiological data, intra- and postoperative complications and patients' outcome was retrieved from patient notes. All available radiographs were assessed by a single reviewer (AJB).</p> <p>Results</p> <p>The results showed a low complication rate with the use of the Gamma Nail. There were 137 (4.5%) intraoperative fracture-related complications. Moreover 189 (6.2%) complications were detected postoperatively and during follow-up. Cut-out of the lag screw from the femoral head was the most frequent mechanical complication (57 patients, 1.85%), whereas a postoperative femoral shaft fracture occurred in 19 patients (0.6%). Other complications, such as infection, delayed healing/non-union, avascular femoral head necrosis and distal locking problems occurred in 113 patients (3.7%).</p> <p>Conclusions</p> <p>The use of the Gamma Nail in trochanteric hip fractures is a safe method with a low complication rate. In particular, a low rate of femoral shaft fractures was reported. The low complication rate reported in this series can probably be explained by strict adherence to a proper surgical technique.</p
- …