1,403 research outputs found

    Simulation and Analysis Chain for Acoustic Ultra-high Energy Neutrino Detectors in Water

    Get PDF
    Acousticneutrinodetectionisapromisingapproachforlarge-scaleultra-highenergyneutrinodetectorsinwater.In this article, a Monte Carlo simulation chain for acoustic neutrino detection devices in water will be presented. The simulation chain covers the generation of the acoustic pulse produced by a neutrino interaction and its propagation to the sensors within the detector. Currently, ambient and transient noise models for the Mediterranean Sea and simulations of the data acquisition hardware, equivalent to the one used in ANTARES/AMADEUS, are implemented. A pre-selection scheme for neutrino-like signals based on matched filtering is employed, as it is used for on-line filtering. To simulate the whole processing chain for experimental data, signal classification and acoustic source reconstruction algorithms are integrated in an analysis chain. An overview of design and capabilities of the simulation and analysis chain will be presented and preliminary studies will be discussed.Comment: 6 pages, 5 figures, ARENA 2012. arXiv admin note: substantial text overlap with arXiv:1304.057

    Development of Combined Opto-Acoustical Sensor Modules

    Full text link
    The faint fluxes of cosmic neutrinos expected at very high energies require large instrumented detector volumes. The necessary volumes in combination with a sufficient shielding against background constitute forbidding and complex environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand these environments and to assure the data quality, the sensors have to be reliable and their operation has to be as simple as possible. A compact sensor module design including all necessary components for data acquisition and module calibration would simplify the detector mechanics and ensures the long term operability of the detector. The compact design discussed here combines optical and acoustical sensors inside one module, therefore reducing electronics and additional external instruments for calibration purposes. In this design the acoustical sensor is primary used for acoustic positioning of the module. The module may also be used for acoustic particle detection and marine science if an appropriate acoustical sensor is chosen. First tests of this design are promising concerning the task of calibration. To expand the field of application also towards acoustic particle detection further improvements concerning electromagnetic shielding and adaptation of the single components are necessary.Comment: 4 pages, 2 figures, ARENA2010 proceeding

    Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones

    Full text link
    This article focuses on techniques for acoustic noise reduction, signal filters and source reconstruction. For noise reduction, bandpass filters and cross correlations are found to be efficient and fast ways to improve the signal to noise ratio and identify a possible neutrino-induced acoustic signal. The reconstruction of the position of an acoustic point source in the sea is performed by using small-volume clusters of hydrophones (about 1 cubic meter) for direction reconstruction by a beamforming algorithm. The directional information from a number of such clusters allows for position reconstruction. The algorithms for data filtering, direction and position reconstruction are explained and demonstrated using simulated data.Comment: 7 pages, 13 figure

    Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection

    Full text link
    Calibration sources are an indispensable tool for all detectors. In acoustic particle detection the goal of a calibration source is to mimic neutrino signatures as expected from hadronic cascades. A simple and promising method for the emulation of neutrino signals are piezo ceramics. We will present results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure
    • …
    corecore