1,403 research outputs found
Simulation and Analysis Chain for Acoustic Ultra-high Energy Neutrino Detectors in Water
Acousticneutrinodetectionisapromisingapproachforlarge-scaleultra-highenergyneutrinodetectorsinwater.In
this article, a Monte Carlo simulation chain for acoustic neutrino detection
devices in water will be presented. The simulation chain covers the generation
of the acoustic pulse produced by a neutrino interaction and its propagation to
the sensors within the detector. Currently, ambient and transient noise models
for the Mediterranean Sea and simulations of the data acquisition hardware,
equivalent to the one used in ANTARES/AMADEUS, are implemented. A pre-selection
scheme for neutrino-like signals based on matched filtering is employed, as it
is used for on-line filtering. To simulate the whole processing chain for
experimental data, signal classification and acoustic source reconstruction
algorithms are integrated in an analysis chain. An overview of design and
capabilities of the simulation and analysis chain will be presented and
preliminary studies will be discussed.Comment: 6 pages, 5 figures, ARENA 2012. arXiv admin note: substantial text
overlap with arXiv:1304.057
Recommended from our members
A Precision Measurement of the Z{sup 0} Lineshape Parameters for the Process Z{sup 0} {r_arrow} {tau}{sup +}{tau}{sup {minus}}
In this dissertation, a measurement of the partial decay width of the process Z{sup 0} {r_arrow} {tau}{sup +}{tau}{sup {minus}} using data collected during 1993 and 1994 at the OPAL detector at CERN is described. The cross sections of this process at three center-of-mass energies near the Z{sup 0} resonance were determined, and from a fit to those cross sections, the mass of the Z{sup 0}, its total decay width and its partial decay width into {tau}{sup +}{tau}{sup {minus}} final states were determined as M{sub Z} = 91.183 {+-} 0.020 GeV, {Lambda}{sub tot} = 2.514 {+-} 0.018 GeV and {Lambda}{sub {tau}{tau}} = 84.54 {+-} 0.59 MeV. Using published results for M{sub Z}, and {Lambda}{sub tot} with higher accuracy, a value for the partial decay width of {Lambda}{sub {tau}{tau}} = 84.02 {+-} 0.20 MeV was obtained. Further using published results for the decay width of the Z{sup 0} into quark pair final states, the invisible decay width of the Z{sup 0} was determined as {Lambda}{sub inv} = 496.9 {+-} 4.1 MeV, and the number of neutrino generations was determined as N{sub {nu}} = 2.974 {+-} 0.025(exp) {+-} 0.007 (m{sub top}, M{sub Higgs}). All results were found to be in good agreement with the Standard Model predictions and were consistent with the assumption of lepton universality within the Standard Model framework
Development of Combined Opto-Acoustical Sensor Modules
The faint fluxes of cosmic neutrinos expected at very high energies require
large instrumented detector volumes. The necessary volumes in combination with
a sufficient shielding against background constitute forbidding and complex
environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand
these environments and to assure the data quality, the sensors have to be
reliable and their operation has to be as simple as possible. A compact sensor
module design including all necessary components for data acquisition and
module calibration would simplify the detector mechanics and ensures the long
term operability of the detector. The compact design discussed here combines
optical and acoustical sensors inside one module, therefore reducing
electronics and additional external instruments for calibration purposes. In
this design the acoustical sensor is primary used for acoustic positioning of
the module. The module may also be used for acoustic particle detection and
marine science if an appropriate acoustical sensor is chosen.
First tests of this design are promising concerning the task of calibration.
To expand the field of application also towards acoustic particle detection
further improvements concerning electromagnetic shielding and adaptation of the
single components are necessary.Comment: 4 pages, 2 figures, ARENA2010 proceeding
Reconstruction methods for acoustic particle detection in the deep sea using clusters of hydrophones
This article focuses on techniques for acoustic noise reduction, signal
filters and source reconstruction. For noise reduction, bandpass filters and
cross correlations are found to be efficient and fast ways to improve the
signal to noise ratio and identify a possible neutrino-induced acoustic signal.
The reconstruction of the position of an acoustic point source in the sea is
performed by using small-volume clusters of hydrophones (about 1 cubic meter)
for direction reconstruction by a beamforming algorithm. The directional
information from a number of such clusters allows for position reconstruction.
The algorithms for data filtering, direction and position reconstruction are
explained and demonstrated using simulated data.Comment: 7 pages, 13 figure
Measurements and Simulation Studies of Piezoceramics for Acoustic Particle Detection
Calibration sources are an indispensable tool for all detectors. In acoustic
particle detection the goal of a calibration source is to mimic neutrino
signatures as expected from hadronic cascades. A simple and promising method
for the emulation of neutrino signals are piezo ceramics. We will present
results of measruements and simulations on these piezo ceramics.Comment: 5 pages, 5 figure
Editorial
Contains fulltext :
173621.pdf (publisher's version ) (Open Access
- …