60,789 research outputs found
Superpartners at LHC and Future Colliders: Predictions from Constrained Compactified M-Theory
We study a realistic top-down M-theory compactification with low-scale
effective Supersymmetry, consistent with phenomenological constraints. A
combination of top-down and generic phenomenological constraints fix the
spectrum. The gluino mass is predicted to be about 1.5 TeV. Three and only
three superpartner channels, , and
(where are Wino-like), are expected
to be observable at LHC-14. We also investigate the prospects of finding heavy
squarks and Higgsinos at future colliders. Gluino-stop-top,
gluino-sbottom-bottom associated production and first generation squark
associated production should be observable at a 100 TeV collider, along with
direct production of heavy Higgsinos. Within this framework the discovery of a
single sparticle is sufficient to determine uniquely the SUSY spectrum,
yielding a number of concrete testable predictions for LHC-14 and future
colliders, and determination of and thereby other fundamental
quantities.Comment: 19 pages, 4 figure
Networking Effects on Cooperation in Evolutionary Snowdrift Game
The effects of networking on the extent of cooperation emerging in a
competitive setting are studied. The evolutionary snowdrift game, which
represents a realistic alternative to the well-known Prisoner's Dilemma, is
studied in the Watts-Strogatz network that spans the regular, small-world, and
random networks through random re-wiring. Over a wide range of payoffs, a
re-wired network is found to suppress cooperation when compared with a
well-mixed or fully connected system. Two extinction payoffs, that characterize
the emergence of a homogeneous steady state, are identified. It is found that,
unlike in the Prisoner's Dilemma, the standard deviation of the degree
distribution is the dominant network property that governs the extinction
payoffs.Comment: Changed conten
Vanishing Gamow-Teller Transition Rate for A=14 and the Nucleon-Nucleon Interaction in the Medium
The problem of the near vanishing of the Gamow-Teller transition () in
the A=14 system between the lowest and states is
revisited. The model space is extended from the valence space to the
valence space plus all 2 excitations. The question is addressed
as to what features of the effective nucleon-nucleon interaction in the medium
are required to obtain the vanishing strength in this extended space. It
turns out that a combination of a realistic strength of the tensor force
combined with a spin-orbit interaction which is enhanced as compared to the
free interaction yields a vanishing strength. Such an interaction can be
derived from a microscopic meson exchange potential if the enhancement of the
small component of the Dirac spinors for the nucleons is taken into account.Comment: RevTex file, 7 pages, four postscript figures. submitted to Phys.
Rev. C as a brief repor
Optical study of phase transitions in single-crystalline RuP
RuP single crystals of MnP-type orthorhombic structure were synthesized by
the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal
that the compound experiences two structural phase transitions, which are
further confirmed by enormous anomalies shown in temperature-dependent
resistivity and magnetic susceptibility. Particularly, the resistivity drops
monotonically upon temperature cooling below the second transition, indicating
that the material shows metallic behavior, in sharp contrast with the
insulating ground state of polycrystalline samples. Optical conductivity
measurements were also performed in order to unravel the mechanism of these two
transitions. The measurement revealed a sudden reconstruction of band structure
over a broad energy scale and a significant removal of conducting carriers
below the first phase transition, while a charge-density-wave-like energy gap
opens below the second phase transition.Comment: 5 pages, 6 figure
Higher Order Corrections to Density and Temperature of Fermions from Quantum Fluctuations
A novel method to determine the density and temperature of a system based on
quantum Fermionic fluctuations is generalized to the limit where the reached
temperature T is large compared to the Fermi energy {\epsilon}f . Quadrupole
and particle multiplicity fluctuations relations are derived in terms of T .
The relevant Fermi integrals are numerically solved for any values of T and
compared to the analytical approximations. The classical limit is obtained, as
expected, in the limit of large temperatures and small densities. We propose
simple analytical formulas which reproduce the numerical results, valid for all
values of T . The entropy can also be easily derived from quantum fluctuations
and give important insight for the behavior of the system near a phase
transition. A comparison of the quantum entropy to the entropy derived from the
ratio of the number of deuterons to neutrons gives a very good agreement
especially when the density of the system is very low
Microlensing of Circumstellar Disks
We investigate the microlensing effects on a source star surrounded by a
circumstellar disk, as a function of wavelength. The microlensing light curve
of the system encodes the geometry and surface brightness profile of the disk.
In the mid- and far-infrared, the emission of the system is dominated by the
thermal emission from the cold dusty disk. For a system located at the Galactic
center, we find typical magnifications to be of order 10-20% or higher,
depending on the disk surface brightness profile, and the event lasts over one
year. At around 20 microns, where the emission for the star and the disk are
comparable, the difference in the emission areas results in a chromatic
microlensing event. Finally, in the near-infrared and visible, where the
emission of the star dominates, the fraction of star light directly reflected
by the disk slightly modifies the light curve of the system which is no longer
that of a point source. In each case, the corresponding light curve can be used
to probe some of the disk properties. A fraction of 0.1% to 1% optical
microlensing events are expected to be associated with circumstellar disk
systems. We show that the lensing signal of the disk can be detected with
sparse follow-up observations of the next generation space telescopes. While
direct imaging studies of circumstellar disks are limited to the solar
neighborhood, this microlensing technique can probe very distant disk systems
living in various environments and has the potential to reveal a larger
diversity of circumstellar disks.Comment: 9 pages, 7 figures. Accepted for publication in Ap
The Nonlinear Permittivity Including Non-Abelian Self-interaction of Plasmons in Quark-Gluon Plasma
By decomposing the distribution functions and color field to regular and
fluctuation parts, the solution of the semi-classical kinetic equations of
quark-gluon plasma is analyzed. Through expanding the kinetic equations of the
fluctuation parts to third order, the nonlinear permittivity including the
self-interaction of gauge field is obtained and a rough numerical estimate is
given out for the important \vk =0 modes of the pure gluon plasma.Comment: 7 pages, shortened version accepted by Chin.Phys.Let
Detecting Majorana fermions by use of superconductor-quantum Hall liquid junctions
The point contact tunnel junctions between a one-dimensional topological
superconductor and single-channel quantum Hall (QH) liquids are investigated
theoretically with bosonization technology and renormalization group methods.
For the integer QH liquid, the universal low-energy tunneling transport
is governed by the perfect Andreev reflection fixed point with quantized
zero-bias conductance , which can serve as a definitive
fingerprint of the existence of a Majorana fermion. For the Laughlin
fractional QH liquids, its transport is governed by the perfect normal
reflection fixed point with vanishing zero-bias conductance and bias-dependent
conductance . Our setup is within reach of present
experimental techniques.Comment: 6 pages, 1 figure, Added references,Corrected typo
- …