11 research outputs found

    Carbon isotope and magnetic polarity evidence for nondepositional events within the Cambrian-Ordovician Boundary section near Dayangcha, Jilin Province, China

    Get PDF
    Carbon isotope and magnetic polarity stratigraphic results from the Cambrian-Ordovician Boundary section at Xiaoyangqiao, near Dayangcha, Jilin Province, China, in comparison to a contemporaneous section at Black Mountain, Australia, indicate strata equivalent to major portions of the Australian sequence are either absent or are restricted to highly condensed intervals. These intervals are correlative with regressive sea level events identified in Australia and western North America, suggesting regional or eustatic sea level changes strongly influenced deposition of the Xiaoyangqiao sequence. These results also suggest the Xiaoyangqiao section is unfavourable as the site of the Cambrian-Ordovician Boundary Global Stratotype Section and Point

    Latest Devonian (Famennian) global events in western Laurentia: Variations in the carbon isotopic record linked to diagenetic alteration below regionally extensive unconformities

    No full text
    Integrated analysis of the sedimentology, stratigraphy, and chemostratigraphy of the uppermost Devonian Chaffee Group of Colorado reveals the presence of two regionally extensive unconformity surfaces associated with globally recognized extinction/eustatic events. The contact between semi-restricted, marginal marine, mixed siliciclastic–carbonate deposits of the Parting Formation and open marine carbonate of the Dyer Formation is a major marine flooding surface across western Colorado. This flooding surface rests at the top of an ~ 5 m thick, transgressive, cross-bedded, shoreline sandstone unit that locally overlies a 2.5-m-thick paleokarst breccia. δ^(13)C values shift lighter across the formation contact, in some cases by as much as 5‰. Oxygen isotopic values are extremely variable between measured stratigraphic sections, in cases invariant across the contact, and in other cases covarying with the δ^(13)C values. At Ouray, CO, δ^(18)O covaries with δ^(13)C throughout the section, and reaches extreme values (< − 30‰) below the unconformity. An isotopic shift in rocks of this age in Utah, coined ALFIE, was previously correlated to the Parting–Dyer contact. This study demonstrates that the carbon and oxygen isotopic record of ALFIE is highly variable across western Laurentia, and that important carbonate chemostratigraphic variations result from diagenesis that is clearly linked to a regional unconformity and associated relative sea-level fall. This lowstand may be a signal of eustatic fall associated with the Dasberg Event, a late Famennian marine extinction event. Similar isotopic patterns exist for strata below and above a paleokarst breccia in the upper Dyer Formation that we link to the globally significant latest Famennian Hangenberg Event, which includes a eustatic lowstand and subsequent transgression. Similar to the Parting–Dyer contact, both carbon and oxygen isotopes in strata below this regional unconformity surface show the variable nature of diagenetic alteration of carbonate units during lowstand conditions. Our data also suggest that correlatable δ^(13)C chemostratigraphic shifts can be diagenetically produced during lowstands across a regionally widespread (western U.S.) basin, and that these δ^(13)C shifts may be expressed within outcrops that show no macroscopic sedimentological signature of subaerial exposure. This has broad implications for the evaluation of δ^(13)C data in the rock record, particularly the assumption that extensive correlatable isotopic anomalies reflect global marine signatures

    Proposed GSSP for the base of Cambrian Stage 10 at the lowest occurrence of Eoconodontus notchpeakensis in the House Range, Utah, USA

    No full text
    The lowest occurrence of the conodont Eoconodontus notchpeakensis (Miller, 1969) has been proposed as the base of Cambrian Stage 10. The horizon is recognized in three sections in the House Range, western Utah, USA in the lower part of the Red Tops Member of the Notch Peak Formation. This horizon fits within a tightly integrated framework that includes conodont, trilobite, and brachiopod biozonations, as well as carbon-isotope stratigraphy and sequence stratigraphy. The proposed horizon is the base of the Eoconodontus conodont Zone. This horizon is in the lower part of the Saukiella junia Subzone of the Saukia trilobite Zone and is near the top of the Billingsella brachiopod Zone. The HERB Event is a high-amplitude, negative carbon-isotope excursion that has been identified in Laurentia, Australia, China, and Argentina. The start of the excursion is at a negative carbon-isotope peak that is less than half a metre above the base of the E. notchpeakensis Subzone, and the highest-amplitude peak of the HERB Event is near the middle of that relatively thin subzone. The HERB Event has been identified in strata with minimal faunal data, providing the possibility of identifying the base of Stage 10 in nearly unfossiliferous strata. The Notch Peak Formation has been divided into a detailed sequence-stratigraphic framework within a lithostratigraphic context, and some of the sequence boundaries have been identified in Australia and China. Conodonts diagnostic of the Eoconodontus Zone have been identified at 54 localities around the world, including in a succession of Cambrian deep-ocean radiolarian cherts. The Utah conodont zonation has been identified across Laurentia and in other parts of the world in facies ranging from continental slope to nearshore sandstone deposits. The variety of correlation tools and the integration of diverse data produce a superior framework for correlation of the proposed base of Stage 10 and for correlation of many horizons within Stage 10

    Ordovician integrative stratigraphy and timescale of China

    No full text
    corecore