236 research outputs found
Epitaxial growth of gallium arsenide with ammonium halides as transporting agents
Epitaxial growth of gallium arsenide with ammonium halides as transporting agent
FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model
Mathematical and computer models of epidemics have contributed to our understanding of the spread of infectious disease and the measures needed to contain or mitigate them. To help prepare for future influenza seasonal epidemics or pandemics, we developed a new stochastic model of the spread of influenza across a large population. Individuals in this model have realistic social contact networks, and transmission and infections are based on the current state of knowledge of the natural history of influenza. The model has been calibrated so that outcomes are consistent with the 1957/1958 Asian A(H2N2) and 2009 pandemic A(H1N1) influenza viruses. We present examples of how this model can be used to study the dynamics of influenza epidemics in the United States and simulate how to mitigate or delay them using pharmaceutical interventions and social distancing measures. Computer simulation models play an essential role in informing public policy and evaluating pandemic preparedness plans. We have made the source code of this model publicly available to encourage its use and further development
Evaluating the Combined Effectiveness of Influenza Control Strategies and Human Preventive Behavior
Control strategies enforced by health agencies are a major type of practice to contain influenza outbreaks. Another type of practice is the voluntary preventive behavior of individuals, such as receiving vaccination, taking antiviral drugs, and wearing face masks. These two types of practices take effects concurrently in influenza containment, but little attention has been paid to their combined effectiveness. This article estimates this combined effectiveness using established simulation models in the urbanized area of Buffalo, NY, USA. Three control strategies are investigated, including: Targeted Antiviral Prophylaxis (TAP), workplace/school closure, community travel restriction, as well as the combination of the three. All control strategies are simulated with and without regard to individual preventive behavior, and the resulting effectiveness are compared. The simulation outcomes suggest that weaker control strategies could suffice to contain influenza epidemics, because individuals voluntarily adopt preventive behavior, rendering these weaker strategies more effective than would otherwise have been expected. The preventive behavior of individuals could save medical resources for control strategies and avoid unnecessary socio-economic interruptions. This research adds a human behavioral dimension into the simulation of control strategies and offers new insights into disease containment. Health policy makers are recommended to review current control strategies and comprehend preventive behavior patterns of local populations before making decisions on influenza containment
The spread of epidemic disease on networks
The study of social networks, and in particular the spread of disease on
networks, has attracted considerable recent attention in the physics community.
In this paper, we show that a large class of standard epidemiological models,
the so-called susceptible/infective/removed (SIR) models can be solved exactly
on a wide variety of networks. In addition to the standard but unrealistic case
of fixed infectiveness time and fixed and uncorrelated probability of
transmission between all pairs of individuals, we solve cases in which times
and probabilities are non-uniform and correlated. We also consider one simple
case of an epidemic in a structured population, that of a sexually transmitted
disease in a population divided into men and women. We confirm the correctness
of our exact solutions with numerical simulations of SIR epidemics on networks.Comment: 12 pages, 3 figure
Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study
Background: Cholera was introduced into Haiti in 2010. Since then, more than 820 000 cases and nearly 10 000 deaths have been reported. Oral cholera vaccine (OCV) is safe and effective, but has not been seen as a primary tool for cholera elimination due to a limited period of protection and constrained supplies. Regionally, epidemic cholera is contained to the island of Hispaniola, and the lowest numbers of cases since the epidemic began were reported in 2019. Hence, Haiti may represent a unique opportunity to eliminate cholera with OCV. Methods: In this modelling study, we assessed the probability of elimination, time to elimination, and percentage of cases averted with OCV campaign scenarios in Haiti through simulations from four modelling teams. For a 10-year period from January 19, 2019, to Jan 13, 2029, we compared a no vaccination scenario with five OCV campaign scenarios that differed in geographical scope, coverage, and rollout duration. Teams used weekly department-level reports of suspected cholera cases from the Haiti Ministry of Public Health and Population to calibrate the models and used common vaccine-related assumptions, but other model features were determined independently. Findings: Among campaigns with the same vaccination coverage (70% fully vaccinated), the median probability of elimination after 5 years was 0–18% for no vaccination, 0–33% for 2-year campaigns focused in the two departments with the highest historical incidence, 0–72% for three-department campaigns, and 35–100% for nationwide campaigns. Two-department campaigns averted a median of 12–58% of infections, three-department campaigns averted 29–80% of infections, and national campaigns averted 58–95% of infections. Extending the national campaign to a 5-year rollout (compared to a 2-year rollout), reduced the probability of elimination to 0–95% and the proportion of cases averted to 37–86%. Interpretation: Models suggest that the probability of achieving zero transmission of Vibrio cholerae in Haiti with current methods of control is low, and that bolder action is needed to promote elimination of cholera from the region. Large-scale cholera vaccination campaigns in Haiti would offer the opportunity to synchronise nationwide immunity, providing near-term population protection while improvements to water and sanitation promote long-term cholera elimination. Funding: Bill & Melinda Gates Foundation, Global Good Fund, Institute for Disease Modeling, Swiss National Science Foundation, and US National Institutes of Health
Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)
Here we present a review of the literature of influenza modeling studies, and discuss how these models can provide insights into the future of the currently circulating novel strain of influenza A (H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic critically depends on the value of the Basic Reproduction Number (R0). The R0 for novel influenza A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of R0 estimated for the 1918–1919 pandemic strain (mean R0~2: range 1.4 to 2.8) and is comparable to R0 values estimated for seasonal strains of influenza (mean R0 1.3: range 0.9 to 2.1). By reviewing results from previous modeling studies we conclude it is theoretically possible that a pandemic of H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to achieve the necessary levels of vaccination and treatment for control. As a recent modeling study has shown, a global cooperative strategy will be essential in order to control a pandemic. This strategy will require resource-rich countries to share their vaccines and antivirals with resource-constrained and resource-poor countries. We conclude our review by discussing the necessity of developing new biologically complex models. We suggest that these models should simultaneously track the transmission dynamics of multiple strains of influenza in bird, pig and human populations. Such models could be critical for identifying effective new interventions, and informing pandemic preparedness planning. Finally, we show that by modeling cross-species transmission it may be possible to predict the emergence of pandemic strains of influenza
Evaluation and use of surveillance system data toward the identification of high-risk areas for potential cholera vaccination: a case study from Niger.
In 2008, Africa accounted for 94% of the cholera cases reported worldwide. Although the World Health Organization currently recommends the oral cholera vaccine in endemic areas for high-risk populations, its use in Sub-Saharan Africa has been limited. Here, we provide the principal results of an evaluation of the cholera surveillance system in the region of Maradi in Niger and an analysis of its data towards identifying high-risk areas for cholera
Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States
Here, the authors demonstrate that variations of absolute humidity explain both the onset of wintertime influenza transmission and the overarching seasonality of this pathogen in temperate regions
Simulation of an SEIR infectious disease model on the dynamic contact network of conference attendees
The spread of infectious diseases crucially depends on the pattern of
contacts among individuals. Knowledge of these patterns is thus essential to
inform models and computational efforts. Few empirical studies are however
available that provide estimates of the number and duration of contacts among
social groups. Moreover, their space and time resolution are limited, so that
data is not explicit at the person-to-person level, and the dynamical aspect of
the contacts is disregarded. Here, we want to assess the role of data-driven
dynamic contact patterns among individuals, and in particular of their temporal
aspects, in shaping the spread of a simulated epidemic in the population.
We consider high resolution data of face-to-face interactions between the
attendees of a conference, obtained from the deployment of an infrastructure
based on Radio Frequency Identification (RFID) devices that assess mutual
face-to-face proximity. The spread of epidemics along these interactions is
simulated through an SEIR model, using both the dynamical network of contacts
defined by the collected data, and two aggregated versions of such network, in
order to assess the role of the data temporal aspects.
We show that, on the timescales considered, an aggregated network taking into
account the daily duration of contacts is a good approximation to the full
resolution network, whereas a homogeneous representation which retains only the
topology of the contact network fails in reproducing the size of the epidemic.
These results have important implications in understanding the level of
detail needed to correctly inform computational models for the study and
management of real epidemics
A Biological Model for Influenza Transmission: Pandemic Planning Implications of Asymptomatic Infection and Immunity
Background: The clinical attack rate of influenza is influenced by prior immunity and mixing patterns in the host population, and also by the proportion of infections that are asymptomatic. This complexity makes it difficult to directly estimate R0 from the attack rate, contributing to uncertainty in epidemiological models to guide pandemic planning. We have modelled multiple wave outbreaks of influenza from different populations to allow for changing immunity and asymptomatic infection and to make inferences about R0. \ud
\ud
Data and Methods. On the island of Tristan da Cunha (TdC), 96% of residents reported illness during an H3N2 outbreak in 1971, compared with only 25% of RAF personnel in military camps during the 1918 H1N1 pandemic. Monte Carlo Markov Chain (MCMC) methods were used to estimate model parameter distributions. \ud
\ud
Findings. We estimated that most islanders on TdC were non-immune (susceptible) before the first wave, and that almost all exposures of susceptible persons caused symptoms. The median R0 of 6.4 (95% credibility interval 3.7–10.7) implied that most islanders were exposed twice, although only a minority became ill in the second wave because of temporary protection following the first wave. In contrast, only 51% of RAF personnel were susceptible before the first wave, and only 38% of exposed susceptibles reported symptoms. R0 in this population was also lower [2.9 (2.3–4.3)], suggesting reduced viral transmission in a partially immune population. \ud
\ud
Interpretation: Our model implies that the RAF population was partially protected before the summer pandemic wave of 1918, arguably because of prior exposure to interpandemic influenza. Without such protection, each symptomatic case of influenza would transmit to between 2 and 10 new cases, with incidence initially doubling every 1–2 days. Containment of a novel virus could be more difficult than hitherto supposed
- …