56 research outputs found

    Structural, magnetic, and magnetoelastic properties of magnesium substituted cobalt ferrite

    Get PDF
    The effects of substituting Mg on the structural, magnetic, and magnetostrictive properties ofcobalt ferrite have been investigated. Comparable values of lattice parameter were obtained for the Mg-substituted samples. Saturation magnetization continuously decreased with increase inMg concentration. Peak-to-peak magnetostriction amplitude and strain sensitivity had a similar dependence on Mg concentration

    Phenomenological modelling of first order phase transitions in magnetic systems

    Get PDF
    First order phase transitions may occur in several magnetic systems, with two structural phases having different magnetic properties each and a structural transition between them. Here, a novel physics based phenomenological model of such systems is proposed, in which magnetization is represented by the volumetric amounts of ferromagnetism (described by extended Jiles-Atherton theory) and paramagnetism (described by the Curie-Weiss law) in respective phases. An identification procedure to extract material parameters from experimental data is proposed. The proposed phenomenological approach was successfully applied to magnetocaloric Gd5(Six Ge 1−x)4 system and also has the potential to describe the behavior of Griffiths phase magnetic systems

    Magnetocaloric Effect of Micro- and Nanoparticles of Gd5Si4

    Get PDF
    Materials exhibiting a large magnetocaloric effect (MCE) at or near room temperature are critical for solid-state refrigeration applications. The MCE is described by a change in entropy (ΔSM) and/or temperature (ΔTad) of a material in response to a change in applied magnetic field. Ball milled materials generally exhibit smaller ΔSM values compared to bulk; however, milling broadens the effect, potentially increasing the relative cooling power (RCP). The as-cast Gd5Si4 is an attractive option due to its magnetic transition at 340 K and associated MCE. Investigation of effect of particles size and transition temperature in the binary material, Gd5Si4, can lead to development of functionally graded bulk material with higher MCE and RCP than the traditional bulk materials. A two-step ball-milling process, in which coarse powder of Gd5Si4 was first milled with poly(ethylene glycol) followed by milling in heptane was used to produce fine particles of Gd5Si4 that showed a broad distribution in particle size. Magnetic measurement on the milled sample obtained after washing with water show a decrease in Curie temperature and significant broadening of the magnetic transition. Compared to bulk Gd5Si4, the maximum MCE of the milled samples is also reduced and shifted down by close to 30 K, but the MCE remains substantial over a broader temperature range. The RCP of both milled samples increased 75% from the bulk material

    Field induced structural phase transition at temperatures above the Curie point in Gd5(SixGe1-x)4

    Get PDF
    Gd5(SixGe1−x)4 exhibits a field induced first order phase transition from a monoclinic paramagnetic to an orthorhombic ferromagnetic at temperatures above its Curie temperature for 0.41 ≤ x ≤ 0.51. The field required to induce the transition increases with temperature. This field induced first order phase transition was observed even above the projected second order phase transition temperature of the orthorhombic phase. This may be due to the fact that the applied magnetic field is so high that it causes the broadening to a wider range of higher temperatures of the second order phase transition of the orthorhombic phase, and at such high magnetic fields the magnetic moment is still quite large, therefore, causing the transition. This hypothesis seems to be confirmed by the various magnetic moment versus magnetic field, magnetic moment versus temperature, and strain versus magnetic field measurements carried out on single crystal Gd5Si1.95Ge2.05 and Gd5Si2Ge2 samples at magnetic fields of 0–9 T and at temperatures of 265–305 K

    Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Get PDF
    This work presents investigations and detailed analysis of ringing in a non-resonant pulsednuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in theantenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors
    • …
    corecore