1,214 research outputs found

    Slow Proton Production in Semi-Inclusive Deep Inelastic Scattering off Deuteron and Complex Nuclei: Hadronization and Final State Interaction Effects

    Full text link
    The effects of the final state interaction in slow proton production in semi inclusive deep inelastic scattering processes off nuclei, A(e,e'p)X, are investigated in details within the spectator and target fragmentation mechanisms; in the former mechanism, the hard interaction on a nucleon of a correlated pair leads, by recoil, to the emission of the partner nucleon, whereas in the latter mechanism proton is produced when the diquark, which is formed right after the visrtual photon-quark interaction, captures a quark from the vacuum. Unlike previous papers on the subject, particular attention is paid on the effects of the final state interaction of the hadronizing quark with the nuclear medium within an approach based upon an effective time-dependent cross section which combines the soft and hard parts of hadronization dynamics in terms of the string model and perturbative QCD, respectively. It is shown that the final state interaction of the hadronizing quark with the medium plays a relevant role both in deuteron and complex nuclei; nonetheless, kinematical regions where final state interaction effects are minimized can experimentally be selected, which would allow one to investigate the structure functions of nucleons embedded in the nuclear medium; likewise, regions where the interaction of the struck hadronizing quark with the nuclear medium is maximized can be found, which would make it possible to study non perturbative hadronization mechanisms.Comment: 35 pages, 12 figures, accepted for pubblication in Phys. Rev.

    High energy neutrino in a nuclear environment: mirror asymmetry of the shadowing effect

    Get PDF
    The parity non-conservation effect in diffractive charged current DIS is quantified in terms of color dipole sizes of left-handed and right-handed electroweak bosons. We identify the origin and estimate the strength of the left-right asymmetry effect and present comparison with experimental data on the parity-odd structure function ΔxF3=xF3νNxF3νˉN\Delta xF_3 =xF_3^{\nu N}-xF_3^{\bar\nu N}. We study the shadowing effect in absorption of left-handed and right-handed WW-bosons by atomic nuclei. The target nucleus is found to be quite transparent for the charmed-strange Fock component of the light-cone W+W^+ in the helicity state λ=+1\lambda=+1 and rather opaque for the csˉc\bar s dipole with λ=1\lambda=-1.Comment: 11 pages, 2 figures, Talk presented at XXXIII International Conference on High Energy Physics 26.07.06-02.08.06 Moscow, version to be publishe

    One-dimensional spin-anisotropic kinetic Ising model subject to quenched disorder

    Full text link
    Large-scale Monte Carlo simulations are used to explore the effect of quenched disorder on one dimensional, non-equilibrium kinetic Ising models with locally broken spin symmetry, at zero temperature (the symmetry is broken through spin-flip rates that differ for '+' and '-' spins). The model is found to exhibit a continuous phase transition to an absorbing state. The associated critical behavior is studied at zero branching rate of kinks, through analysis spreading of '+' and '-' spins and, of the kink density. Impurities exert a strong effect on the critical behavior only for a particular choice of parameters, corresponding to the strongly spin-anisotropic kinetic Ising model introduced by Majumdar et al. Typically, disorder effects become evident for impurity strengths such that diffusion is nearly blocked. In this regime, the critical behavior is similar to that arising, for example, in the one-dimensional diluted contact process, with Griffiths-like behavior for the kink density. We find variable cluster exponents, which obey a hyperscaling relation, and are similar to those reported by Cafiero et al. We also show that the isotropic two-component AB -> 0 model is insensitive to reaction-disorder, and that only logarithmic corrections arise, induced by strong disorder in the diffusion rate.Comment: 10 pages, 13 figures. Final, accepted form in PRE, including a new table summarizing the molde

    Absorption in Ultra-Peripheral Nucleus-Atom Collisions in Crystal

    Full text link
    The Glauber theory description of particle- and nucleus-crystal Coulomb interactions at high-energy is developed. The allowance for the lattice thermal vibrations is shown to produce strong absorption effect which is of prime importance for quantitative understanding of the coherent Coulomb excitation of ultra-relativistic particles and nuclei passing through the crystal.Comment: 8 pages, LaTe

    Meson production in high-energy electron-nucleus scattering

    Full text link
    Pseudoscalar mesons can be produced and studied in high-energy electron-nucleus scattering. We review and extend our previous analysis of meson production in the nuclear Coulomb field. The PγγP\rightarrow \gamma \gamma decay rates are most directly determined for mesons produced in the double-Coulomb region where both photons are nearly real, and provided the background-hadronic contribution remains small. The larger the mass of the meson the higher the electron energy needed to assure such a condition.Comment: 19 pages, 2 figure

    Applicability of Monte Carlo Glauber models to relativistic heavy ion collision data

    Full text link
    The accuracy of Monte Carlo Glauber model descriptions of minimum-bias multiplicity frequency distributions is evaluated using data from the Relativistic Heavy Ion Collider (RHIC) within the context of a sensitive, power-law representation introduced previously by Trainor and Prindle (TP). Uncertainties in the Glauber model input and in the mid-rapidity multiplicity frequency distribution data are reviewed and estimated using the TP centrality methodology. The resulting errors in model-dependent geometrical quantities used to characterize heavy ion collisions ({\em i.e.} impact parameter, number of nucleon participants NpartN_{part}, number of binary interactions NbinN_{bin}, and average number of binary collisions per incident participant nucleon ν\nu) are presented for minimum-bias Au-Au collisions at sNN\sqrt{s_{NN}} = 20, 62, 130 and 200 GeV and Cu-Cu collisions at sNN\sqrt{s_{NN}} = 62 and 200 GeV. Considerable improvement in the accuracy of collision geometry quantities is obtained compared to previous Monte Carlo Glauber model studies, confirming the TP conclusions. The present analysis provides a comprehensive list of the sources of uncertainty and the resulting errors in the above geometrical collision quantities as functions of centrality. The capability of energy deposition data from trigger detectors to enable further improvements in the accuracy of collision geometry quantities is also discussed.Comment: 27 pages, 4 figures, 11 table

    Dynamics of Majority Rule

    Full text link
    We introduce a 2-state opinion dynamics model where agents evolve by majority rule. In each update, a group of agents is specified whose members then all adopt the local majority state. In the mean-field limit, where a group consists of randomly-selected agents, consensus is reached in a time that scales ln N, where N is the number of agents. On finite-dimensional lattices, where a group is a contiguous cluster, the consensus time fluctuates strongly between realizations and grows as a dimension-dependent power of N. The upper critical dimension appears to be larger than 4. The final opinion always equals that of the initial majority except in one dimension.Comment: 4 pages, 3 figures, 2-column revtex4 format; annoying typo fixed in Eq.(1); a similar typo fixed in Eq.(6) and some references update

    Low energy onset of nuclear shadowing in photoabsorption

    Get PDF
    The early onset of nuclear shadowing in photoabsorption at low photon energies has recently been interpreted as a possible signature of a decrease of the rho meson mass in nuclei. We show that one can understand this early onset within simple Glauber theory if one takes the negative real part of the rho N scattering amplitudes into account, corresponding to a higher effective mass of the rho meson in nuclear medium.Comment: REVTEX, 9 pages, including 4 eps figure

    Does HBT Measure the Freeze-out Source Distribution?

    Full text link
    It is generally assumed that as a result of multiple scattering, the source distribution measured in HBT interferometry corresponds to a chaotic source at freeze-out. This assumption is subject to question as effects of multiple scattering in HBT measurements must be investigated within a quantum-mechanical framework. Applying the Glauber multiple scattering theory at high energies and the optical model at lower energies, we find that multiple scattering leads to an effective HBT density distribution that depends on the initial chaotic source distribution with an absorption.Comment: 4 pages, talk presented at QM2004 Conference, January 11-17, 2004, Oakland, California, USA, to be published in the Proceeding

    Nuclear shadowing at low photon energies

    Full text link
    We calculate the shadowing effect in nuclear photoabsorption at low photon energies (1-3 GeV) within a multiple scattering approach. We avoid some of the high energy approximations that are usually made in simple Glauber theory like the narrow width and the eikonal approximation. We find that the main contribution to nuclear shadowing at low energies stems from ρ0\rho^0 mesons with masses well below their pole mass. We also show that the possibility of scattering in non forward directions allows for a new contribution to shadowing at low energies: the production of neutral pions as intermediate hadronic states enhances the shadowing effect in the onset region. For light nuclei and small photon energies they give rise to about 30% of the total shadowing effect.Comment: RevTeX, 16 pages including 6 eps figures; new calculation of effective pion propagator, negligible effect on results; version to be published in Phys. Rev.
    corecore