38 research outputs found

    Boundary Integral Equations for the Laplace-Beltrami Operator

    Full text link
    We present a boundary integral method, and an accompanying boundary element discretization, for solving boundary-value problems for the Laplace-Beltrami operator on the surface of the unit sphere §\S in R3\mathbb{R}^3. We consider a closed curve C{\cal C} on S{\cal S} which divides S{\cal S} into two parts S1{\cal S}_1 and S2{\cal S}_2. In particular, C=S1{\cal C} = \partial {\cal S}_1 is the boundary curve of S1{\cal S}_1. We are interested in solving a boundary value problem for the Laplace-Beltrami operator in §2\S_2, with boundary data prescribed on \C

    Solvability of singular integral equations with rotations and degenerate kernels in the vanishing coefficient case

    Get PDF
    By means of Riemann boundary value problems and of certain convenient systems of linear algebraic equations, this paper deals with the solvability of a class of singular integral equations with rotations and degenerate kernel within the case of a coefficient vanishing on the unit circle. All the possibilities about the index of the coefficients in the corresponding equations are considered and described in detail, and explicit formulas for their solutions are obtained. An example of application of the method is shown at the end of the last section

    Finite Interval Convolution Operators with Transmission Property

    Full text link
    corecore