5,848 research outputs found

    Multi-Triplet Magnons in SrCu2_2(BO3_3)2_2 Studied by Thermal Conductivity Measurements in Magnetic Fields

    Full text link
    We have measured the thermal conductivity parallel to the a-axis of the Zn-free and 1% Zn-substituted SrCu2x_{2-x}Znx_x(BO3_3)2_2 in magnetic fields up to 14 T, in order to examine the thermal conductivity due to the multi-triplet magnons. It has been found that the thermal conductivity peak observed in the spin gap state is suppressed by the substitution of Zn for Cu in high magnetic fields above 6 T, while it is not changed in low magnetic fields below 6 T. The results suggest that the thermal conductivity peak in the spin-gap state of SrCu2_2(BO3_3)2_2 is composed of not only thermal conductivity due to phonons but also that due to the multi-triplet magnons in high fields above 6 T.Comment: 7 pages, 2 figure

    Single-crystal growth and dependences on the hole concentration and magnetic field of the magnetic ground state in the edge-sharing CuO2_2 chain system Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10}

    Get PDF
    We have succeeded in growing large-size single-crystals of Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10} with 0x1.670 \le x \le 1.67 and measured the magnetic susceptibility, specific heat and magnetization curve, in order to study the magnetic ground state in the edge-sharing CuO2_2 chain as a function of hole concentration and magnetic field. In 0x1.30 \le x \le 1.3, it has been found that an antiferromagnetically ordered phase with the magnetic easy axis along the b-axis is stabilized and that a spin-flop transition occurs by the application of magnetic fields parallel to the b-axis. The antiferromagnetic transition temperature decreases with increasing xx and disappears around x=x = 1.4. Alternatively, a spin-glass phase appears around x=1.5x = 1.5. At x=1.67x = 1.67 where the hole concentration is \sim 1/3 per Cu, it appears that a spin-gap state is formed owing to the formation of spin-singlet pairs. No sign of the coexistence of an antiferromagnetically ordered state and a spin-gap one suggested in Ca1x_{1-x}CuO2_2 has been found in Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10}.Comment: 13 pages, 12 figures, 1 tabl

    Diffusive transport in spin-1 chains at high temperatures

    Full text link
    We present a numerical study on the spin and thermal conductivities of the spin-1 Heisenberg chain in the high temperature limit, in particular of the Drude weight contribution and frequency dependence. We use the Exact Diagonalization and the recently developed microcanonical Lanczos method; it allows us a finite size scaling analysis by the study of significantly larger lattices. This work, pointing to a diffusive rather than ballistic behavior is discussed with respect to other recent theoretical and experimental studies

    High temperature thermal conductivity of 2-leg spin-1/2 ladders

    Full text link
    Based on numerical simulations, a study of the high temperature, finite frequency, thermal conductivity κ(ω)\kappa(\omega) of spin-1/2 ladders is presented. The exact diagonalization and a novel Lanczos technique are employed.The conductivity spectra, analyzed as a function of rung coupling, point to a non-diverging dcdc-limit but to an unconventional low frequency behavior. The results are discussed with perspective recent experiments indicating a significant magnetic contribution to the energy transport in quasi-one dimensional compounds.Comment: 4 pages, 4 figure

    Level statistics of XXZ spin chains with a random magnetic field

    Full text link
    The level-spacing distribution of a spin 1/2 XXZ chain is numerically studied under random magnetic field. We show explicitly how the level statistics depends on the lattice size L, the anisotropy parameter Δ\Delta, and the mean amplitude of the random magnetic field h. In the energy spectrum, quantum integrability competes with nonintegrability derived from the randomness, where the XXZ interaction is modified by the parameter Δ\Delta. When Δ0\Delta \ne 0, the level-spacing distribution mostly shows Wigner-like behavior, while when Δ\Delta=0, Poisson-like behavior appears although the system is nonintegrable due to randomness. Poisson-like behavior also appears for Δ0\Delta \ne 0 in the large h limit. Furthermore, the level-spacing distribution depends on the lattice size L, particularly when the random field is weak.Comment: 4 pages, 3 figures, to be published in Phys. Rev.

    Evidence for Ballistic Thermal Conduction in the One-Dimensional S=1/2 Heisenberg Antiferromagnetic Spin System Sr2CuO3

    Full text link
    We have measured the thermal conductivity of the one-dimensional (1D) S=1/2 Heisenberg antiferromagnetic spin system of Sr2Cu1-xPdxO3 single crystals including nonmagnetic impurities of Pd2+. It has been found that the mean free path of spinons along the 1D spin chain at low temperatures is very close to the average length of finite spin chains between spin defects estimated from the magnetic susceptibility measurements. This proves that the thermal conduction due to spinons at low temperatures in Sr2CuO3 is ballistic as theoretically expected [Zotos et al.: Phys. Rev. Lett. 55 (1997) 11029]

    Synthesis and Characterization of Homoleptic and Heteroleptic Ruthenium Polypyridine Complexes

    Get PDF
    The homoleptic ruthenium(II) complex Ru(C13H10N2)3(PF6)2, and heteroleptic ruthenium(II) complexes Ru(C13H10N2)2(C10H8N2)(PF6)2, and Ru(C13H10N2)(C10H8N2)2(PF6)2 have been prepared by following the standard synthetic procedure. These complexes were then purified by repeated column chromatography. The identity and the integrity of the complexes were confirmed by elemental analysis and mass spectroscopy. The calculated and the experimental values for the elemental analysis were in good agreement. The calculated and the experimental molar masses obtained were also identical. Ultravioletvisible absorption and emission spectroscopic methods were used to investigate the properties of these complexes. The absorption spectra of all complexes consist of a series of absorption bands in the ultraviolet and visible region. All three complexes show a strong emission band in the visible region. The emission maxima for the heteroleptic complexes are slightly redshifted

    Slow, Steady-State Transport with "Loading" and Bulk Reactions: the Mixed Ionic Conductor La2_2CuO4+δ_{4+\delta}

    Full text link
    We consider slow, steady transport for the normal state of the superconductor La2_2CuO4+δ_{4+\delta} in a one-dimensional geometry, with surface fluxes sufficiently general to permit oxygen to be driven into the sample (``loaded'') either by electrochemical means or by high oxygen partial pressure. We include the bulk reaction O\toO2+2h^{2-}+2h, where neutral atoms (aa) go into ions (ii) and holes (hh). For slow, steady transport, the transport equations simplify because the bulk reaction rate density rr and the bulk loading rates tn\partial_t n then are uniform in space and time. All three fluxes jj must be specified at each surface, which for a uniform current density JJ corresponds to five independent fluxes. These fluxes generate two types of static modes at each surface and a bulk response with a voltage profile that varies quadratically in space, characterized by JJ and the total oxygen flux jOj_O (neutral plus ion) at each surface. One type of surface mode is associated with electrical screening; the other type is associated both with diffusion and drift, and with chemical reaction (the {\it diffusion-reaction mode}). The diffusion-reaction mode is accompanied by changes in the chemical potentials μ\mu, and by reactions and fluxes, but it neither carries current (J=0) nor loads the system chemically (jO=0j_O=0). Generation of the diffusion-reaction mode may explain the phenomenon of ``turbulence in the voltage'' often observed near the electrodes of other mixed ionic electronic conductors (MIECs).Comment: 11 pages, 1 figur

    Enhancement of the Thermal Conductivity in gapped Quantum Spin Chains

    Full text link
    We study mechanism of magnetic energy transport, motivated by recent measurements of the thermal conductivity in low dimensional quantum magnets. We point out a possible mechanism of enhancement of the thermal conductivity in gapped magnetic system, where the magnetic energy transport plays a crucial role. This mechanism gives an interpretation for the recent experiment of CuGeO_3, where the thermal conductivity depends on the crystal direction.Comment: 4 pages, 2 figure
    corecore