5,846 research outputs found
XMM-Newton Observations of Evolution of Cluster X-Ray Scaling Relations at z=0.4-0.7
We present a spatially-resolved analysis of the temperature and gas density
profiles of galaxy clusters at z=0.4-0.7 observed with XMM-Newton. These data
are used to derive the total cluster mass within the radius r_500 without
assuming isothermality, and also to measure the average temperature and total
X-ray luminosity excluding the cooling cores. We derive the high-redshift M-T
and L-T relations and compare them with the local measurements. The
high-redshift L-T relation has low scatter and evolves as L ~ (1+z)^{1.8\pm0.3}
for a fixed T, in good agreement with several previous Chandra and XMM-Newton
studies (Vikhlinin et al., Lumb et al., Maughan et al.). The observed evolution
of the M-T relation follows M_500 = A T^{3/2} E(z)^{-alpha}, where we measure
alpha=0.88\pm0.23. This is in good agreement with predictions of the
self-similar theory, alpha=1.Comment: ApJ in press, updated to match the accepted versio
AC Hopping Magnetotransport Across the Spin Flop Transition in Lightly Doped La_2CuO_4
The weak ferromagnetism present in insulating La_{2}CuO_4 at low doping leads
to a spin flop transition, and to transverse (interplane) hopping of holes in a
strong external magnetic field. This results in a dimensional crossover 2D
3D for the in-plane transport, which in turn leads to an increase of the
hole's localization length and increased conduction. We demonstrate
theoretically that as a consequence of this mechanism, a frequency-dependent
jump of the in-plane ac hopping conductivity occurs at the spin flop
transition. We predict the value and the frequency dependence of the jump.
Experimental studies of this effect would provide important confirmation of the
emerging understanding of lightly doped insulating La_{2-x}Sr_xCuO_4.Comment: 4 pages, 1 figur
Tunable Integrated-Optics Nanoscaled Devices Based on Magnetic Photonic Crystals
Magnetooptical properties of magnetic photonic crystals have been
investigated in the view of their possible applications for the modern
integrated-optics devices. A "transfer matrices" formalism was expanded for the
case of oblique light incidence on the periodic nanoscaled magnetic
multilayered systems. Several new effects such as the Faraday effect dependence
on the incidence angle and the tunability of the bandgap defect modes spectral
location by external magnetic fields were found. Several possibilities of
one-dimensional magnetic photonic crystals applications for the optical devices
are discussed. Initial steps towards the practical implementation of the
proposed devices are reported.Comment: Submitted on behalf of TIMA Editions
(http://irevues.inist.fr/tima-editions
Single hole dynamics in dimerized spin liquids
The dynamics of a single hole in quantum antiferromagnets is influenced by
magnetic fluctuations. In the present work we consider two situations. The
first one corresponds to a single hole in the two leg t-J spin ladder. In this
case the wave function renormalization is relatively small and the
quasiparticle residue of the S=1/2 state remains close to unity. However at
large t/J there are higher spin (S=3/2,5/2,..) bound states of the hole with
the magnetic excitations, and therefore there is a crossover from
quasiparticles with S=1/2 to quasiparticles with higher spin.
The second situation corresponds to a single hole in two coupled
antiferromagnetic planes very close to the point of antiferromagnetic
instability. In this case the hole wave function renormalization is very strong
and the quasiparticle residue vanishes at the point of instability.Comment: 12 pages, 3 figure
New quantum phase transitions in the two-dimensional J1-J2 model
We analyze the phase diagram of the frustrated Heisenberg antiferromagnet,
the J1-J2 model, in two dimensions. Two quantum phase transitions in the model
are already known: the second order transition from the Neel state to the spin
liquid state at (J_2/J_1)_{c2}=0.38, and the first order transition from the
spin liquid state to the collinear state at (J_2/J_1)_{c4}=0.60. We have found
evidence for two new second order phase transitions: the transition from the
spin columnar dimerized state to the state with plaquette type modulation at
(J_2/J_1)_{c3}=0.50(2), and the transition from the simple Neel state to the
Neel state with spin columnar dimerization at (J_2/J_1)_{c1}=0.34(4). We also
present an independent calculation of (J_2/J_1)_{c2}=0.38 using a new approach.Comment: 3 pages, 5 figures; added referenc
Bound states of magnons in the S=1/2 quantum spin ladder
We study the excitation spectrum of the two-leg antiferromagnetic S=1/2
Heisenberg ladder. Our approach is based on the description of the excitations
as triplets above a strong-coupling singlet ground state. The quasiparticle
spectrum is calculated by treating the excitations as a dilute Bose gas with
infinite on-site repulsion. We find singlet (S=0) and triplet (S=1)
two-particle bound states of the elementary triplets. We argue that bound
states generally exist in any dimerized quantum spin model.Comment: 4 REVTeX pages, 4 Postscript figure
Critical Dynamics of Singlet Excitations in a Frustrated Spin System
We construct and analyze a two-dimensional frustrated quantum spin model with
plaquette order, in which the low-energy dynamics is controlled by spin
singlets. At a critical value of frustration the singlet spectrum becomes
gapless, indicating a quantum transition to a phase with dimer order. This T=0
transition belongs to the 3D Ising universality class, while at finite
temperature a 2D Ising critical line separates the plaquette and dimerized
phases.
The magnetic susceptibility has an activated form throughout the phase
diagram, whereas the specific heat exhibits a rich structure and a power law
dependence on temperature at the quantum critical point.
We argue that the novel quantum critical behavior associated with singlet
criticality discussed in this work can be relevant to a wide class of quantum
spin systems, such as antiferromagnets on Kagome and pyrochlore lattices, where
the low-energy excitations are known to be spin singlets, as well as to the
CAVO lattice and several recently discovered strongly frustrated square-lattice
antiferromagnets.Comment: 5 pages, 5 figures, additional discussion and figure added, to appear
in Phys. Rev.
Inferring Trajectories of Psychotic Disorders Using Dynamic Causal Modeling
INTRODUCTION: Illness course plays a crucial role in delineating psychiatric disorders. However, existing nosologies consider only its most basic features (e.g., symptom sequence, duration). We developed a Dynamic Causal Model (DCM) that characterizes course patterns more fully using dense timeseries data. This foundational study introduces the new modeling approach and evaluates its validity using empirical and simulated data. METHODS: A three-level DCM was constructed to model how latent dynamics produce symptoms of depression, mania, and psychosis. This model was fit to symptom scores of nine patients collected prospectively over four years, following first hospitalization. Simulated subjects based on these empirical data were used to evaluate model parameters at the subject-level. At the group-level, we tested the accuracy with which the DCM can estimate the latent course patterns using Parametric Empirical Bayes (PEB) and leave-one-out cross-validation. RESULTS: Analyses of empirical data showed that DCM accurately captured symptom trajectories for all nine subjects. Simulation results showed that parameters could be estimated accurately (correlations between generative and estimated parameters >= 0.76). Moreover, the model could distinguish different latent course patterns, with PEB correctly assigning simulated patients for eight of nine course patterns. When testing any pair of two specific course patterns using leave-one-out cross-validation, 30 out of 36 pairs showed a moderate or high out-of-samples correlation between the true group-membership and the estimated group-membership values. CONCLUSION: DCM has been widely used in neuroscience to infer latent neuronal processes from neuroimaging data. Our findings highlight the potential of adopting this methodology for modeling symptom trajectories to explicate nosologic entities, temporal patterns that define them, and facilitate personalized treatment
Excitation spectrum and ground state properties of the S=1/2 Heisenberg ladder with staggered dimerization
We have studied the excitation spectrum of the quantum spin ladder
with staggered dimerization by dimer series expansions, diagrammatic analysis
of an effective interacting Bose gas of local triplets, and exact
diagonalization of small clusters. We find that the model has two massive
phases, with predominant inter-chain (rung) or intra-chain correlations. The
transition from the rung dimer into the intra-chain dimer phase is
characterized by softening of the triplet spectrum at . The excitation
spectrum as well as the spin correlations away from and close to the critical
line are calculated. The location of the phase boundary is also determined.Comment: 13 pages, 7 figure
- …