323 research outputs found
Simulation of multiscale industrial solidification problem under influence of electromagnetic field by meshless method
Simulation and control of macrosegregation, deformation and grain size under electromagnetic (EM) processing conditions is important in industrial solidification systems, since it influences the quality of the casts and consequently the whole downstream processing path. Respectively, a multiphysics and multiscale model is developed for solution of Lorentz force, temperature, velocity, concentration, deformation and grain structure of the casts. The mixture equations with lever rule, linearized phase diagram, and stationary thermoelastic solid phase are assumed, together with EM induction equation for the field imposed by the low frequency EM field or Ohm’s law and charge conservation equation for stationary EM field. Turbulent effects are incorporated through the solution of a low-Re turbulence model. The solidification system is treated by the mixture-continuum model, where the mushy zone is modeled as a Darcy porous media with Kozeny-Karman permeability relation and columnar solid phase moving with the system velocity. Explicit diffuse approximate meshless solution procedure [1] is used for solving the EM field, and the explicit local radial basis function collocation method [2] is used for solving the coupled transport phenomena and thermomechanics fields. Pressure-velocity coupling is performed by the fractional step method [3]. The point automata method with modified KGT model is used to estimate the grain structure [4] in a post-processing mode. Thermal, mechanical, EM and grain structure outcomes of the model are demonstrated for low frequency EM casting of round aluminium billets. A systematic study of the complicated influences of the process parameters on the microstructure can be investigated by the model, including intensity and frequency of the electromagnetic field
Impact of Technetium-99m Sestamibi Imaging on the Emergency Department Management and Costs in the Evaluation of Low-risk Chest Pain
Objectives: To assess the impact of rest sestamibi scanning on emergency physicians' (EPs') diagnostic certainty and decision making (as assessed by the hypothetical disposition of patients) for 69 consenting stable patients with suspected acute cardiac ischemia and nondiagnostic electrocardiograms. The resultant impact on costs was examined as a secondary outcome. Methods: Patients with suspected acute cardiac ischemia were injected with 25 mCi of sestamibi within two hours of active pain in one of three emergency department study sites. The probability of acute myocardial infarction (AMI) and unstable angina (UA), and hypothetical disposition decisions were recorded immediately before and after physicians were notified of scan results. Changes in disposition were classified as optimal or suboptimal. For the cost determinations, a cost-based decision support program was used. Results: For the subgroup found to be free of acute cardiac events (ACEs) ( n = 62), the EPs' post-sestamibi scan probabilities for AMI decreased by 11% and UA by 18% (p < 0.001 for both conditions). In seven patients with ACEs, the post-scan probabilities of AMI and UA increased, but neither was statistically significant. Scan results led to hypothetical disposition changes in 29 patients (42%), of which 27 (93%) were optimal (nine patients were reassigned to a lower level of care, two to a higher level, and 16 additional patients to “discharge-home” status). The strategy of scanning all patients who were low to moderate risk for acute cardiac ischemia would result in an increase of direct costs of care of $222 per patient evaluated, due to added cost of sestamibi scanning. Conclusions: Sestamibi scanning results appropriately affected the EPs' estimates of the probability of AMI and UA and improved disposition decisions. Scanning all low-risk patients would likely be associated with increased costs at this medical center.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73784/1/j.1553-2712.2001.tb02108.x.pd
Implications from clean observables for the binned analysis of B -> K*ll at large recoil
We perform a frequentist analysis of q^2-dependent B-> K*(->Kpi)ll angular
observables at large recoil, aiming at bridging the gap between current
theoretical analyses and the actual experimental measurements. We focus on the
most appropriate set of observables to measure and on the role of the
q^2-binning. We highlight the importance of the observables P_i exhibiting a
limited sensitivity to soft form factors for the search for New Physics
contributions. We compute predictions for these binned observables in the
Standard Model, and we compare them with their experimental determination
extracted from recent LHCb data. Analyzing b->s and b->sll transitions within
four different New Physics scenarios, we identify several New Physics benchmark
points which can be discriminated through the measurement of P_i observables
with a fine q^2-binning. We emphasise the importance (and risks) of using
observables with (un)suppressed dependence on soft form factors for the search
of New Physics, which we illustrate by the different size of hadronic
uncertainties attached to two related observables (P_1 and S_3). We illustrate
how the q^2-dependent angular observables measured in several bins can help to
unravel New Physics contributions to B-> K*(->Kpi)ll, and show the
extraordinary constraining power that the clean observables will have in the
near future. We provide semi-numerical expressions for these observables as
functions of the relevant Wilson coefficients at the low scale.Comment: 50 pages, 21 figures. Improved form factor analysis, conclusions
unchanged. Plots with full resolution. Version published in JHE
Changes in shell durability of common marine taxa through the Phanerozoic: evidence for biological rather than taphonomic drivers.
Abstract.-Phanerozoic trends in shell and life habit traits linked to postmortem durability were evaluated for the most common fossil brachiopod, gastropod, and bivalve genera in order to test for changes in taphonomic bias. Using the Paleobiology Database, we tabulated occurrence frequencies of genera for 48 intervals of ,11 Myr duration. The most frequently occurring genera, cumulatively representing 40% of occurrences in each time bin, were scored for intrinsic durability on the basis of shell size, reinforcement (ribs, folds, and spines), life habit, and mineralogy. Shell durability is positively correlated with the number of genera in a time bin, but durability traits exhibit different temporal patterns across higher taxa, with notable offsets in the timing of changes in these traits. We find no evidence for temporal decreases in durability that would indicate taphonomic bias at the Phanerozoic scale among commonly occurring genera. Also, all three groups show a remarkable stability in mean shell size through the Phanerozoic, an unlikely pattern if strong sizefiltering taphonomic megabiases were affecting the fossil record of shelly faunas. Moreover, small shell sizes are attained in the early Paleozoic in brachiopods and in the latest Paleozoic in gastropods but are steady in bivalves; unreinforced shells are common to all groups across the entire Phanerozoic; organophosphatic and aragonitic shells dominate only the oldest and youngest time bins; and microstructures having high organic content are most common in the oldest time bins. In most cases, the timing of changes in durability-related traits is inconsistent with a late Mesozoic Marine Revolution. The post-Paleozoic increase in mean gastropod reinforcement occurs in the early Triassic, suggesting either an earlier appearance and expansion of durophagous predators or other drivers. Increases in shell durability hypothesized to be the result of increased predation in the late Mesozoic are not evident in the common genera examined here. Infaunal life habit does increase in the late Mesozoic, but it does not become more common than levels already attained during the Paleozoic, and only among bivalves does the elevated late Mesozoic level persist through the Holocene. These temporal patterns suggest control on the occurrence of durability-related traits by individual evolutionary histories rather than taphonomic megabiases. Our findings do not mean taphonomic biases are absent from the fossil record, but rather that their effects apparently have had little net effect on the relative occurrence of shell traits generally thought to confer higher preservation potential over long time scales
Tolerance to coxibs in patients with intolerance to non-steroidal anti-inflammatory drugs (NSAIDs): a systematic structured review of the literature
Adverse events triggered by non-steroidal anti-inflammatory drugs (NSAIDs) are among the most common drug-related intolerance reactions in medicine; they are possibly related to inhibition of cyclooxygenase-1. Coxibs, preferentially inhibiting cyclooxygenase-2, may therefore represent safe alternatives in patients with NSAID intolerance. We reviewed the literature in a systematic and structured manner to identify and evaluate studies on the tolerance of coxibs in patients with NSAID intolerance. We searched MEDLINE (1966–2006), the COCHRANE LIBRARY (4th Issue 2006) and EMBASE (1966–2006) up to December 9, 2006, and analysed all publications included using a predefined evaluation sheet. Symptoms and severity of adverse events to coxibs were analysed based on all articles comprising such information. Subsequently, the probability for adverse events triggered by coxibs was determined on analyses of double-blind prospective trials only. Among 3,304 patients with NSAID intolerance, 119 adverse events occurred under coxib medication. All adverse events, except two, have been allergic/urticarial in nature; none was lethal, but two were graded as life-threatening (grade 4). The two non-allergic adverse events were described as a grade 1 upper respiratory tract haemorrhage, and a grade 1 gastrointestinal symptom, respectively. In 13 double-blind prospective studies comprising a total of 591 patients with NSAID intolerance, only 13 adverse reactions to coxib provocations were observed. The triggering coxibs were rofecoxib (2/286), celecoxib (6/208), etoricoxib (4/56), and valdecoxib (1/41). This review documents the good tolerability of coxibs in patients with NSAID intolerance, for whom access to this class of drugs for short-term treatment of pain and inflammation is advantageous
Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact?
The bacterial species Staphylococcus aureus, including its methicillin-resistant variant (MRSA), finds its primary ecological niche in the human nose, but is also able to colonize the intestines and the perineal region. Intestinal carriage has not been widely investigated despite its potential clinical impact. This review summarizes literature on the topic and sketches the current state of affairs from a microbiological and infectious diseases' perspective. Major findings are that the average reported detection rate of intestinal carriage in healthy individuals and patients is 20% for S. aureus and 9% for MRSA, which is approximately half of that for nasal carriage. Nasal carriage seems to predispose to intestinal carriage, but sole intestinal carriage occurs relatively frequently and is observed in 1 out of 3 intestinal carriers, which provides a rationale to include intestinal screening for surveillance or in outbreak settings. Colonization of the intestinal tract with S. aureus at a young age occurs at a high frequency and may affect the host's immune system. The frequency of intestinal carriage is generally underestimated and may significantly contribute to bacterial dissemination and subsequent risk of infections. Whether intestinal rather than nasal S. aureus carriage is a primary predictor for infections is still ill-defined
- …