188 research outputs found

    Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations

    Get PDF
    The new digital economy has renewed interest in how digital agents can innovate. This follows the legacy of John von Neumann dynamical systems theory on complex biological systems as computation. The Gödel-Turing-Post (GTP) logic is shown to be necessary to generate innovation based structure changing Type 4 dynamics of the Wolfram-Chomsky schema. Two syntactic procedures of GTP logic permit digital agents to exit from listable sets of digital technologies to produce novelty and surprises. The first is meta-analyses or offline simulations. The second is a fixed point with a two place encoding of negation or opposition, referred to as the Gödel sentence. It is postulated that in phenomena ranging from the genome to human proteanism, the Gödel sentence is a ubiquitous syntactic construction without which escape from hostile agents qua the Liar is impossible and digital agents become entrained within fixed repertoires. The only recursive best response function of a 2-person adversarial game that can implement strategic innovation in lock-step formation of an arms race is the productive function of the Emil Post [58] set theoretic proof of the Gödel incompleteness result. This overturns the view of game theorists that surprise and innovation cannot be a Nash equilibrium of a game

    Economic Analysis of Knowledge: The History of Thought and the Central Themes

    Full text link
    Following the development of knowledge economies, there has been a rapid expansion of economic analysis of knowledge, both in the context of technological knowledge in particular and the decision theory in general. This paper surveys this literature by identifying the main themes and contributions and outlines the future prospects of the discipline. The wide scope of knowledge related questions in terms of applicability and alternative approaches has led to the fragmentation of research. Nevertheless, one can identify a continuing tradition which analyses various aspects of the generation, dissemination and use of knowledge in the economy

    Possibility spaces and the notion of novelty: from music to biology

    Get PDF
    International audienceWe provide a new perspective on the relation between the space of description of an object and the appearance of novelties. One of the aims of this perspective is to facilitate the interaction between mathematics and historical sciences. The definition of novelties is paradoxical: if one can define in advance the possibles, then they are not genuinely new. By analyzing the situation in set theory, we show that defining generic (i.e., shared) and specific (i.e., individual) properties of elements of a set are radically different notions. As a result, generic and specific definitions of possibilities cannot be conflated. We argue that genuinely stating possibilities requires that their meaning has to be made explicit. For example, in physics, properties playing theoretical roles are generic; then, generic reasoning is sufficient to define possibilities. By contrast, in music, we argue that specific properties matter, and generic definitions become insufficient. Then, the notion of new possibilities becomes relevant and irreducible. In biology, among other examples, the generic definition of the space of DNA sequences is insufficient to state phenotypic possibilities even if we assume complete genetic determinism. The generic properties of this space are relevant for sequencing or DNA duplication, but they are inadequate to understand phenotypes. We develop a strong concept of biological novelties which justifies the notion of new possibilities and is more robust than the notion of changing description spaces. These biological novelties are not generic outcomes from an initial situation. They are specific and this specificity is associated with biological functions, that is to say, with a specific causal structure. Thus, we think that in contrast with physics, the concept of new possibilities is necessary for biology
    corecore