330 research outputs found

    Superfield Approach To Nilpotent Symmetries For QED From A Single Restriction: An Alternative To The Horizontality Condition

    Full text link
    We derive together the exact local, covariant, continuous and off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the U(1) gauge field (A_\mu), the (anti-)ghost fields ((\bar C)C) and the Dirac fields (\psi, \bar\psi) of the Lagrangian density of a four (3 + 1)-dimensional QED by exploiting a single restriction on the six (4, 2)-dimensional supermanifold. A set of four even spacetime coordinates x^\mu (\mu = 0, 1, 2, 3) and two odd Grassmannian variables \theta and \bar\theta parametrize this six dimensional supermanifold. The new gauge invariant restriction on the above supermanifold owes its origin to the (super) covariant derivatives and their intimate relations with the (super) 2-form curvatures (\tilde F^{(2)})F^{(2)} constructed with the help of (super) 1-form gauge connections (\tilde A^{(1)})A^{(1)} and (super) exterior derivatives (\tilde d)d. The results obtained separately by exploiting (i) the horizontality condition, and (ii) one of its consistent extensions, are shown to be a simple consequence of this new single restriction on the above supermanifold. Thus, our present endeavour provides an alternative to (and, in some sense, generalization of) the horizontality condition of the usual superfield formalism applied to the derivation of BRST symmetries.Comment: LaTeX file, 15 pages, journal-versio

    Reconstructing the Primordial Spectrum with CMB Temperature and Polarization

    Full text link
    We develop a new method to reconstruct the power spectrum of primordial curvature perturbations, P(k)P(k), by using both the temperature and polarization spectra of the cosmic microwave background (CMB). We test this method using several mock primordial spectra having non-trivial features including the one with an oscillatory component, and find that the spectrum can be reconstructed with a few percent accuracy by an iterative procedure in an ideal situation in which there is no observational error in the CMB data. In particular, although the previous ``cosmic inversion'' method, which used only the temperature fluctuations, suffered from large numerical errors around some specific values of kk that correspond to nodes in a transfer function, these errors are found to disappear almost completely in the new method.Comment: 18 pages, 17 figures, submitted to PR

    `Standard' Cosmological model & beyond with CMB

    Full text link
    Observational Cosmology has indeed made very rapid progress in the past decade. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation Measurements of CMB anisotropy and, more recently, polarization have played a very important role. Besides precise determination of various parameters of the `standard' cosmological model, observations have also established some important basic tenets that underlie models of cosmology and structure formation in the universe -- `acausally' correlated initial perturbations in a flat, statistically isotropic universe, adiabatic nature of primordial density perturbations. These are consistent with the expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early universe. Further, gravitational instability is the established mechanism for structure formation from these initial perturbations. The signature of primordial perturbations observed as the CMB anisotropy and polarization is the most compelling evidence for new, possibly fundamental, physics in the early universe. The community is now looking beyond the estimation of parameters of a working `standard' model of cosmology for subtle, characteristic signatures from early universe physics.Comment: 16 pages, 6 figures, Plenary talk, Proc. of GR-19, Mexico City, Mexico (Jul 5-9, 2010). To appear in a special issue in Class. Q. Gra

    Reconstructing the primordial power spectrum - a new algorithm

    Full text link
    We propose an efficient and model independent method for reconstructing the primordial power spectrum from Cosmic Microwave Background (CMB) and large scale structure observations. The algorithm is based on a Monte Carlo principle and therefore very simple to incorporate into existing codes such as Markov Chain Monte Carlo. The algorithm has been used on present cosmological data to test for features in the primordial power spectrum. No significant evidence for features is found, although there is a slight preference for an overall bending of the spectrum, as well as a decrease in power at very large scales. We have also tested the algorithm on mock high precision CMB data, calculated from models with non-scale invariant primordial spectra. The algorithm efficiently extracts the underlying spectrum, as well as the other cosmological parameters in each case. Finally we have used the algorithm on a model where an artificial glitch in the CMB spectrum has been imposed, like the ones seen in the WMAP data. In this case it is found that, although the underlying cosmological parameters can be extracted, the recovered power spectrum can show significant spurious features, such as bending, even if the true spectrum is scale invariant.Comment: 22 pages, 12 figures, matches JCAP published versio

    Reconstruction of the Primordial Power Spectrum by Direct Inversion

    Full text link
    We introduce a new method for reconstructing the primordial power spectrum, P(k)P(k), directly from observations of the Cosmic Microwave Background (CMB). We employ Singular Value Decomposition (SVD) to invert the radiation perturbation transfer function. The degeneracy of the multipole â„“\ell to wavenumber kk linear mapping is thus reduced. This enables the inversion to be carried out at each point along a Monte Carlo Markov Chain (MCMC) exploration of the combined P(k)P(k) and cosmological parameter space. We present best--fit P(k)P(k) obtained with this method along with other cosmological parameters.Comment: 23 pages, 9 figure

    Smooth hybrid inflation in supergravity with a running spectral index and early star formation

    Full text link
    It is shown that in a smooth hybrid inflation model in supergravity adiabatic fluctuations with a running spectral index with \ns >1 on a large scale and \ns <1 on a smaller scale can be naturally generated, as favored by the first-year data of WMAP. It is due to the balance between the nonrenormalizable term in the superpotential and the supergravity effect. However, since smooth hybrid inflation does not last long enough to reproduce the central value of observation, we invoke new inflation after the first inflation. Its initial condition is set dynamically during smooth hybrid inflation and the spectrum of fluctuations generated in this regime can have an appropriate shape to realize early star formation as found by WMAP. Hence two new features of WMAP observations are theoretically explained in a unified manner.Comment: 12 pages, 1 figure, to appear in Phys. Rev.

    The lncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation

    Get PDF
    The expression of the long noncoding RNA HOTAIR (HOX Transcript Antisense Intergenic RNA) is largely deregulated in epithelial cancers and positively correlates with poor prognosis and progression of hepatocellular carcinoma and gastrointestinal cancers. Furthermore, functional studies revealed a pivotal role for HOTAIR in the epithelial-to-mesenchymal transition, as this RNA is causal for the repressive activity of the master factor SNAIL on epithelial genes. Despite the proven oncogenic role of HOTAIR, its transcriptional regulation is still poorly understood. Here hepatocyte nuclear factor 4-α (HNF4α), as inducer of epithelial differentiation, was demonstrated to directly repress HOTAIR transcription in the mesenchymal-to epithelial transition. Mechanistically, HNF4α was found to cause the release of a chromatin loop on HOTAIR regulatory elements thus exerting an enhancer-blocking activity

    Targeted deletion of the C-terminus of the mouse adenomatous polyposis coli tumor suppressor results in neurologic phenotypes related to schizophrenia

    Get PDF
    Background: Loss of adenomatous polyposis coli (APC) gene function results in constitutive activation of the canonical Wnt pathway and represents the main initiating and rate-limiting event in colorectal tumorigenesis. APC is likely to participate in a wide spectrum of biological functions via its different functional domains and is abundantly expressed in the brain as well as in peripheral tissues. However, the neuronal function of APC is poorly understood. To investigate the functional role of Apc in the central nervous system, we analyzed the neurological phenotypes of Apc 1638T/1638T mice, which carry a targeted deletion of the 3′ terminal third of Apc that does not affect Wnt signaling. Results: A series of behavioral tests revealed a working memory deficit, increased locomotor activity, reduced anxiety-related behavior, and mildly decreased social interaction in Apc 1638T/1638T mice. Apc 1638T/1638T mice showed abnormal morphology of the dendritic spines and impaired long-term potentiation of synaptic transmission in the hippocampal CA1 region. Moreover, Apc 1638T/1638T mice showed abnormal dopamine and serotonin distribution in the brain. Some of these behavioral and neuronal phenotypes are related to symptoms and endophenotypes of schizophrenia. Conclusions: Our results demonstrate that the C-terminus of the Apc tumor suppressor plays a critical role in cognitive and neuropsychiatric functioning. This finding suggests a potential functional link between the C-terminus of APC and pathologies of the central nervous system

    Cosmology with CMB anisotropy

    Get PDF
    Measurements of CMB anisotropy and, more recently, polarization have played a very important role allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early universe have also been established -- `acausally' correlated initial perturbations in a flat, statistically isotropic universe, adiabatic nature of primordial density perturbations. Direct evidence for gravitational instability mechanism for structure formation from primordial perturbations has been established. In the next decade, future experiments promise to strengthen these deductions and uncover the remaining crucial signature of inflation -- the primordial gravitational wave background.Comment: Plenary talk at the IXth. International Workshop on High Energy Physics Phenomenology (WHEPP-9), Institute of Physics, Bhubaneshwar, India. Jan 3-14, 2006; To appear in the Proceedings to be published in Pramana; 12 pages, 2 figure

    The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition

    Get PDF
    The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT.Oncogene advance online publication, 25 July 2016; doi:10.1038/onc.2016.260
    • …
    corecore