1,027 research outputs found
Anomalous Elasticity of Polymer Cholesterics
We show that polymer cholesterics have much longer pitches than comparable
short molecule cholesterics, due to their anomalous elasticity. The pitch
of a chiral mixture with concentration near the racemic (non-chiral)
concentration diverges like with (for short molecule cholesterics ). The short molecule law is
recovered for polymers of finite molecular length once the pitch is
longer than a length that diverges like with . Our predictions could be tested by measurements of the pitch in DNA.Comment: 12 pages, Plain TeX, (1 postscript figure, compressed, uuencoded and
appended to paper), minor corrections, IASSNS-HEP-94/4
Smectic Phases with Cubic Symmetry: The Splay Analog of the Blue Phase
We report on a construction for smectic blue phases, which have quasi-long
range smectic translational order as well as long range cubic or hexagonal
order. Our proposed structures fill space with a combination of minimal surface
patches and cylindrical tubes. We find that for the right range of material
parameters, the favorable saddle-splay energy of these structures can stabilize
them against uniform layered structures.Comment: 4 pages, 4 eps figures, RevTe
Structure Function of Polymer Nematic Liquid Crystals: A Monte Carlo Simulation
We present a Monte Carlo simulation of a polymer nematic for varying volume
fractions, concentrating on the structure function of the sample. We achieve
nematic ordering with stiff polymers made of spherical monomers that would
otherwise not form a nematic state. Our results are in good qualitative
agreement with theoretical and experimental predictions, most notably the
bowtie pattern in the static structure function.Comment: 10 pages, plain TeX, macros included, 3 figures available from
archive. Published versio
Singular Values, Nematic Disclinations, and Emergent Biaxiality
Both uniaxial and biaxial nematic liquid crystals are defined by
orientational ordering of their building blocks. While uniaxial nematics only
orient the long molecular axis, biaxial order implies local order along three
axes. As the natural degree of biaxiality and the associated frame, that can be
extracted from the tensorial description of the nematic order, vanishes in the
uniaxial phase, we extend the nematic director to a full biaxial frame by
making use of a singular value decomposition of the gradient of the director
field instead. New defects and degrees of freedom are unveiled and the
similarities and differences between the uniaxial and biaxial phase are
analyzed by applying the algebraic rules of the quaternion group to the
uniaxial phase.Comment: 5 pages, 1 figure, submitted to PR
Nonlinear Effects in the TGB_A Phase
We study the nonlinear interactions in the TGB_A phase by using a
rotationally invariant elastic free energy. By deforming a single grain
boundary so that the smectic layers undergo their rotation within a finite
interval, we construct a consistent three-dimensional structure. With this
structure we study the energetics and predict the ratio between the intragrain
and intergrain defect spacing, and compare our results with those from linear
elasticity and experiment.Comment: 4 pages, RevTeX, 2 included eps figure
Dynamics of shallow impact cratering
We present data for the time-dependence of wooden spheres penetrating into a
loose non-cohesive packing of glass beads. The stopping time is a factor of
three longer than the time needed to travel the total penetration
distance at the impact speed . The acceleration decreases
monotonically throughout the impact. These kinematics are modelled by a
position- and velocity-dependent stopping force that is constrained to
reproduce prior observations for the scaling of the penetration depth with the
total drop distance.Comment: 4 pages, experimen
Boundary Effects in Chiral Polymer Hexatics
Boundary effects in liquid-crystalline phases can be large due to long-ranged
orientational correlations. We show that the chiral hexatic phase can be locked
into an apparent three-dimensional N+6 phase via such effects. Simple numerical
estimates suggest that the recently discovered "polymer hexatic" may actually
be this locked phase.Comment: 4 pages, RevTex, 3 included eps figure
- …