1,344 research outputs found

    Subgap Two-Photon States in Polycyclic Aromatic Hydrocarbons: Evidence for Strong Electron Correlations

    Full text link
    Strong electron correlation effects in the photophysics of quasi-one-dimensional π\pi-conjugated organic systems such as polyenes, polyacetylenes, polydiacetylenes, etc., have been extensively studied. Far less is known on correlation effects in two-dimensional π\pi-conjugated systems. Here we present theoretical and experimental evidence for moderate repulsive electron-electron interactions in a number of finite polycyclic aromatic hydrocarbon molecules with D6hD_{6h} symmetry. We show that the excited state orderings in these molecules are reversed relative to that expected within one-electron and mean-field theories. Our results reflect similarities as well as differences in the role and magnitude of electron correlation effects in these two-dimensional molecules compared to those in polyenes.Comment: 11 pages, 5 figures, 2 table

    Total Binding Energy Via the Band Structure Energy of 4d Group Transition Metals

    Get PDF

    (3E,5E)-1-Benzyl-3,5-bis­(2-fluoro­benzyl­idene)piperidin-4-one

    Get PDF
    The inversion-related mol­ecules of the title compound, C26H21F2NO, associate into closed dimeric subunits via co-operative C—H⋯π inter­actions. Two non-classical C—H⋯O and one C—H⋯N intra­molecular hydrogen bonds are also found in the crystal structure. The piperidin-4-one ring adopts a sofa conforamtion with the 1-benzyl group in the equatorial position, and the equiplanar fluoro­phenyl substituents in the 3- and 5-positions stretched out on either side. The 1-benzyl group is disposed towards the substituent in the 6th position of the piperidin-4-one ring. The 3,5-diene units possess E configurations

    3-(7,8,13,14-Tetra­hydrodi­benzo­[a,i]phen­an­thridin-5-yl)benzene-1,2-diol

    Get PDF
    In the title compound, C27H21NO2, the half-chair conformation of the alicyclic rings gives rise to a slightly folded structure of the central tricyclic tetra­hydrophenanthridine unit. Tandem intra­molecular O—H⋯N and O—H⋯O hydrogen bonds give rise to adjacent S(6) and S(5) rings, respectively, which dictate the conformation of the 5-aryl substituent. In the crystal structure, an inter­molecular C—H⋯O contact generates chains parallel to [101]. Short O—H⋯π and C—H⋯π contacts are also observed

    Charge Delocalization in Self-Assembled Mixed-Valence Aromatic Cation Radicals

    Get PDF
    The spontaneous assembly of aromatic cation radicals (D+•) with their neutral counterpart (D) affords dimer cation radicals (D2+•). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography

    4-(4-Chloro­phen­yl)-N-[(E)-4-(dimethyl­amino)­benzyl­idene]-1,3-thia­zol-2-amine

    Get PDF
    The title compound, C18H16ClN3S, adopts an extended mol­ecular structure. The thia­zole ring is inclined by 9.2 (1) and 15.3 (1)° with respect to the chloro­phenyl and 4-(dimethyl­amino)­phenyl rings, respectively, while the benzene ring planes make an angle of 19.0 (1)°. A weak inter­molecular C—H⋯π contact is observed in the crystal structure

    1-Meth­oxy-4-({[(4-meth­oxy­phen­yl)­sulfan­yl](phen­yl)meth­yl}sulfan­yl)benzene

    Get PDF
    The title compound, C21H20O2S2, forms a propeller-shaped structure with the tetra­hedral C atom as the central hub and meth­oxy­benzene and phenyl residues as radiating blades. Short C—H⋯π contacts are observed

    (3E,5E)-3,5-Bis(4-allyl­oxybenzyl­idene)-1-benzyl­piperidin-4-one

    Get PDF
    In the title compound C32H31NO3, the all­yloxy groups on either side of the piperidin-4-one ring are conformationally disordered. The contribution of major and minor components of the allyloxy group at the 3rd position of the ring are 0.576 (4) and 0.424 (4), respectively, and those at the 5th position are 0.885 (3) and 0.115 (3), respectively. The six-membered piperidin-4-one ring adopts a sofa conformation with the benzyl group occupying an equatorial position and the olefinic double bonds possessing an E configuration. Flanking phenyl substituents are stretched out on either side of the six-membered ring. π–π inter­actions with a centroid–centroid distance of 3.885 (1) Å give rise to mol­ecular dimers and short C—H⋯π contacts lead to chains along the c axis

    African and Asian origin pearl millet populations: Genetic diversity pattern and its association with yield heterosis

    Get PDF
    Pearl millet [Pennisetum glaucum (L.) R. Br.] is a staple food crop of arid and semi-arid regions of Asia and Africa. Forty-five pearl millet populations of Asian and African origin were assessed for genetic diversity using 29 simple sequence repeat (SSR) markers. The SSR-based clustering and structure analyses showed that Asian origin–Asian bred (As-As) and African origin–African bred (Af-Af) populations were distributed across seven clusters, indicating no strong relationship among populations with their geographical origin. Most of the African origin–Asian bred (Af-As) populations had a higher average number of alleles per locus than As-As or Af-Af populations, and the majority of them clustered separately from As-As or Af-Af populations, indicating that introgression of African origin breeding materials led to the development of new gene pools adapted to the Asian region. Fourteen populations representing seven clusters were crossed according to a diallel mating design to generate 91 population hybrids (seeds of direct and reciprocal crossesweremixed) and evaluated at three locations in 2016. All the 91 hybrids when partitioned into three groups based on genetic distance (GD) between parental combinations (low,moderate, and high), revealed no correlation between GD and panmictic midparent heterosis in any of the groups, indicating that grain yield heterosis cannot be predicted based on GD. Two population hybrids (GB 8735 × ICMP 87307 and Sudan I × Ugandi) exhibited high levels of yield heterosis over standard checks and can be further utilized using different breeding schemes to develop high-yielding pearl millet cultivars

    (7E)-5-Benzyl-7-(2-chloro­benzyl­idene)-3-(2-chloro­phen­yl)-2-phenyl-3,3a,4,5,6,7-hexa­hydro-2H-pyrazolo­[4,3-c]pyridine

    Get PDF
    In the title 2H-pyrazolo­[4,3-c]pyridine derivative, C32H27Cl2N3, the dihydro­pyrazole ring adopts an envelope conformation and the piperidine fused ring a twisted-chair conformation. Two short intra­molecular C—H⋯Cl contacts are observed. The crystal packing is characterized by dimeric C—Cl⋯π inter­actions involving the 5-benzyl ring, with Cl⋯centroid and closest atomic Cl⋯π distances of 3.778 (2) and 3.366 (4) Å, respectively
    corecore