29 research outputs found

    Oral administration of iron-saturated bovine lactoferrin-loaded ceramic nanocapsules for breast cancer therapy and influence on iron and calcium metabolism

    Full text link
    We determined the anticancer efficacy and internalization mechanism of our polymeric-ceramic nanoparticle system (calcium phosphate nanocores, enclosed in biodegradable polymers chitosan and alginate nanocapsules/nanocarriers [ACSC NCs]) loaded with iron-saturated bovine lactoferrin (Fe-bLf) in a breast cancer xenograft model. ACSC-Fe-bLf NCs with an overall size of 322±27.2 nm were synthesized. In vitro internalization and anticancer efficacy were evaluated in the MDA-MB-231 cells using multicellular tumor spheroids, CyQUANT and MTT assays. These NCs were orally delivered in a breast cancer xenograft mice model, and their internalization, cytotoxicity, biodistribution, and anticancer efficacy were evaluated. Chitosan-coated calcium phosphate Fe-bLf NCs effectively (59%, P≤0.005) internalized in a 1-hour period using clathrin-mediated endocytosis (P≤0.05) and energy-mediated pathways (P≤0.05) for internalization; 3.3 mg/mL of ACSC-Fe-bLf NCs completely disintegrated (~130-fold reduction, P≤0.0005) the tumor spheroids in 72 hours and 96 hours. The IC50 values determined for ACSC-Fe-bLf NCs were 1.69 mg/mL at 10 hours and 1.62 mg/mL after 20 hours. We found that Fe-bLf-NCs effectively (P≤0.05) decreased the tumor size (4.8-fold) compared to the void NCs diet and prevented tumor recurrence when compared to intraperitoneal injection of Taxol and Doxorubicin. Receptor gene expression and micro-RNA analysis confirmed upregulation of low-density lipoprotein receptor and transferrin receptor (liver, intestine, and brain). Several micro-RNAs responsible for iron metabolism upregulated with NCs were identified. Taken together, orally delivered Fe-bLf NCs offer enhanced antitumor activity in breast cancer by internalizing via low-density lipoprotein receptor and transferrin receptor and regulating the micro-RNA expression. These NCs also restored the body iron and calcium levels and increased the hematologic counts

    MicroRNA in human cancer and chronic inflammatory diseases

    Full text link
    MicroRNAs (miRNAs) are the non-coding RNAs that act as post-translational regulators to their complimentary messenger RNAs (mRNA). Due to their specific gene silencing property, miRNAs have been implicated in a number of cellular and developmental processes. Also, it has been proposed that a particular set of miRNA spectrum is expressed only in a particular type of tissue. Many interesting findings related to the differential expression of miRNAs in various human diseases including several types of cancers, neurodegenerative diseases and metabolic diseases have been reported. Deregulation of miRNA expression in different types of human diseases and the roles various miRNAs play as tumour suppressors as well as oncogenes, suggest their contribution to cancer and/or in other disease development. These findings have possible implications in the development of diagnostics and/or therapeutics in human malignancies. In this review, we discuss various miRNAs that are differentially expressed in human chronic inflammatory diseases, neurodegenerative diseases, cancer and the further prospective development of miRNA based diagnostics and therapeutics.<br /

    Recent advances in nanoneurology for drug delivery to the brain

    Full text link
    The drug development for neurodegenerative disorders are the major challenge to the science in 21st century. Many FDA approved drugs currently available in the market have limitations in crossing the blood brain barrier (BBB) owing to its complicated vasculature posed by the presence of specialized cells. Nanotechnology is an emerging interdisciplinary area, which have many applications including drug delivery. Nanocarrier drug delivery involves targeting drugs enclosed in a particular polymer and/or amphiphilic lipids. Controlled release, nanoplatform availability for combinatorial therapy and tissue specific targeting by using advanced technologies such as molecular Trojan horse (MTH) technology are the promises of nanotechnology. Different problems are associated with drug deliveryacross the BBB. Some are mostly related to the structure of brain microvasculature system while the others are related to the nanomaterialstructure. Different strategies, such as using polymeric/solid lipid nanoparticles and surface modification of nanomaterial with surfactantslike polysorbates have been conducted to solve these limitations. Also, nanodrug formulations with double coatings have been designed for oral delivery of drugs to overcome reticulo-endothelial system and to improve their BBB permeability. It seems that the best choice of strategy and material could be achieved with regard to the physical and chemical structure of the drugs. The present review discusses the potential applications of nanotechnology for drug delivery across the BBB.<br /

    A novel nanoplatform for oral delivery of anti-cancer biomacromolecules

    Full text link
    Oral administration of bio&ndash;macromolecules is an uphill task and the challenges from varying pH and enzymatic activity are difficult to overcome. In this regard, nanotechnology promises the new hope and offers advantages such as controlled release, target specific delivery, combinatorial therapy and many more. In this study, we demonstrate the formulation of a novel alginate enclosed, chitosan coated ceramic, anti cancer nano carrier (ACSC NC). These NC were loaded with multi functional anti cancer bovine lactoferrin (Lf), a natural milk based protein, for improvement of intestinal absorption, in order to develop a novel platform to carry anti cancer protein and/or peptides for oral therapy. Here we demonstrate the size, morphology, internalisation and release profiles of the nanoparticles (NC) under varying pH as perceived in human digestive system. We further determine the uptake of these particles by colon cancer cell lines by measuring the endocytosis and transcytosis of the NC. These NC can be used for future targeted protein/peptide or nucleic acid based drug delivery to treat difficult diseases including cancer

    Effect of selenium-saturated bovine lactoferrin (Se-bLF) on antioxidant enzyme activities in human gut epithelial cells under oxidative stress

    Full text link
    Cancer and many chronic inflammatory diseases are associated with increased amounts of reactive oxygen species (ROS). The potential cellular and tissue damage created by ROS has significant impact on many disease and cancer states and natural therapeutics are becoming essential in regulating altered redox states. We have shown recently that iron content is a critical determinant in the antitumour activity of bovine milk lactoferrin (bLF). We found that 100% iron-saturated bLF (Fe-bLF) acts as a potent natural adjuvant and fortifying agent for augmenting cancer chemotherapy and thus has a broad utility in the treatment of cancer. Furthermore, we also studied the effects of iron saturated bLF\u27s ability as an antioxidant in the human epithelial colon cancer cell line HT29, giving insights into the potential of bLF in its different states. Thus, metal saturated bLF could be implemented as anti-cancer neutraceutical. In this regard, we have recently been able to prepare a selenium (Se) saturated form of bLF, being up to 98% saturated. Therefore, the objectives of this study were to determine how oxidative stress induced by hydrogen peroxide (H2O2) alters antioxidant enzyme activity within HT29 epithelial colon cancer cells, and observe changes in this activity by treatments with different antioxidants ascorbic acid (AA), Apo (iron free)-bLF and selenium (Se)-bLF. The states of all antioxidant enzymes (glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-s-transferase (GsT), catalase and superoxide dismutase (SOD)) demonstrated high levels within untreated HT29 cells compared to the majority of other treatments being used, even prior to H2O2 exposure. All enzymes showed significant alterations in activity when cells were treated with antioxidants AA, Apo-bLF or Se-bLF, with and/or without H2O2 exposure. Obvious indications that the Se content of the bLF potentially interacted with the glutathione (GSH)/GPx/GR/GsT associated redox system could be observed immediately, showing capability of Se-bLF being highly beneficial in helping to maintain a balance between the oxidant/antioxidant systems within cells and tissues, especially in selenium deficient systems. In conclusion, the antioxidative defence activity of Se-bLf, investigated in this study for the first time, shows dynamic adaptations that may allow for essential protection from the imbalanced oxidative conditions. Because of its lack of toxicity and the availability of both selenium and bLF in whole milk, Se-bLF offers a promise for a prospective natural dietary supplement, in addition to being an immune system enhancement, or a potential chemopreventive agent for cancers.<br /

    Fe-bLf nanoformulation targets survivin to kill colon cancer stem cells and maintains absorption of iron, calcium and zinc

    Full text link
    To validate the anticancer efficacy of alginate-enclosed, chitosan-conjugated, calcium phosphate, iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (NCs) with improved sustained release and ability to induce apoptosis by downregulating survivin, as well as cancer stem cells
    corecore