150 research outputs found
Globally controlled universal quantum computation with arbitrary subsystem dimension
We introduce a scheme to perform universal quantum computation in quantum
cellular automata (QCA) fashion in arbitrary subsystem dimension (not
necessarily finite). The scheme is developed over a one spatial dimension
-element array, requiring only mirror symmetric logical encoding and global
pulses. A mechanism using ancillary degrees of freedom for subsystem specific
measurement is also presented.Comment: 7 pages, 1 figur
Minimum orbit dimension for local unitary action on n-qubit pure states
The group of local unitary transformations partitions the space of n-qubit
quantum states into orbits, each of which is a differentiable manifold of some
dimension. We prove that all orbits of the n-qubit quantum state space have
dimension greater than or equal to 3n/2 for n even and greater than or equal to
(3n + 1)/2 for n odd. This lower bound on orbit dimension is sharp, since
n-qubit states composed of products of singlets achieve these lowest orbit
dimensions.Comment: 19 page
Yang-Mills theory for bundle gerbes
Given a bundle gerbe with connection on an oriented Riemannian manifold of
dimension at least equal to 3, we formulate and study the associated Yang-Mills
equations. When the Riemannian manifold is compact and oriented, we prove the
existence of instanton solutions to the equations and also determine the moduli
space of instantons, thus giving a complete analysis in this case. We also
discuss duality in this context.Comment: Latex2e, 7 pages, some typos corrected, to appear in J. Phys. A:
Math. and Ge
Cavity QED and Quantum Computation in the Weak Coupling Regime
In this paper we consider a model of quantum computation based on n atoms of
laser-cooled and trapped linearly in a cavity and realize it as the n atoms
Tavis-Cummings Hamiltonian interacting with n external (laser) fields.
We solve the Schr{\" o}dinger equation of the model in the case of n=2 and
construct the controlled NOT gate by making use of a resonance condition and
rotating wave approximation associated to it. Our method is not heuristic but
completely mathematical, and the significant feature is a consistent use of
Rabi oscillations.
We also present an idea of the construction of three controlled NOT gates in
the case of n=3 which gives the controlled-controlled NOT gate.Comment: Latex file, 22 pages, revised version. To appear in Journal of Optics
B : Quantum and Semiclassical Optic
Quantum circuits with uniformly controlled one-qubit gates
Uniformly controlled one-qubit gates are quantum gates which can be
represented as direct sums of two-dimensional unitary operators acting on a
single qubit. We present a quantum gate array which implements any n-qubit gate
of this type using at most 2^{n-1} - 1 controlled-NOT gates, 2^{n-1} one-qubit
gates and a single diagonal n-qubit gate. The circuit is based on the so-called
quantum multiplexor, for which we provide a modified construction. We
illustrate the versatility of these gates by applying them to the decomposition
of a general n-qubit gate and a local state preparation procedure. Moreover, we
study their implementation using only nearest-neighbor gates. We give upper
bounds for the one-qubit and controlled-NOT gate counts for all the
aforementioned applications. In all four cases, the proposed circuit topologies
either improve on or achieve the previously reported upper bounds for the gate
counts. Thus, they provide the most efficient method for general gate
decompositions currently known.Comment: 8 pages, 10 figures. v2 has simpler notation and sharpens some
result
BRST, anti-BRST and their geometry
We continue the comparison between the field theoretical and geometrical
approaches to the gauge field theories of various types, by deriving their
Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST trasformation properties and
comparing them with the geometrical properties of the bundles and gerbes. In
particular, we provide the geometrical interpretation of the so--called
Curci-Ferrari conditions that are invoked for the absolute anticommutativity of
the BRST and anti-BRST symmetry transformations in the context of non-Abelian
1-form gauge theories as well as Abelian gauge theory that incorporates a
2-form gauge field. We also carry out the explicit construction of the 3-form
gauge fields and compare it with the geometry of 2--gerbes.Comment: A comment added. To appear in Jour. Phys. A: Mathemaical and
Theoretica
Modular Invariance and Characteristic Numbers
We show that a general miraculous cancellation formula, the divisibility of
certain characteristic numbers and some other topologiclal results are con-
sequences of the modular invariance of elliptic operators on loop spaces.
Previously we have shown that modular invariance also implies the rigidity of
many elliptic operators on loop spaces.Comment: 14 page
Crystal Graphs and -Analogues of Weight Multiplicities for the Root System
We give an expression of the -analogues of the multiplicities of weights
in irreducible \sl_{n+1}-modules in terms of the geometry of the crystal
graph attached to the corresponding U_q(\sl_{n+1})-modules. As an
application, we describe multivariate polynomial analogues of the
multiplicities of the zero weight, refining Kostant's generalized exponents.Comment: LaTeX file with epic, eepic pictures, 17 pages, November 1994, to
appear in Lett. Math. Phy
Cohomological aspects on complex and symplectic manifolds
We discuss how quantitative cohomological informations could provide
qualitative properties on complex and symplectic manifolds. In particular we
focus on the Bott-Chern and the Aeppli cohomology groups in both cases, since
they represent useful tools in studying non K\"ahler geometry. We give an
overview on the comparisons among the dimensions of the cohomology groups that
can be defined and we show how we reach the -lemma
in complex geometry and the Hard-Lefschetz condition in symplectic geometry.
For more details we refer to [6] and [29].Comment: The present paper is a proceeding written on the occasion of the
"INdAM Meeting Complex and Symplectic Geometry" held in Cortona. It is going
to be published on the "Springer INdAM Series
The diagonalization method in quantum recursion theory
As quantum parallelism allows the effective co-representation of classical
mutually exclusive states, the diagonalization method of classical recursion
theory has to be modified. Quantum diagonalization involves unitary operators
whose eigenvalues are different from one.Comment: 15 pages, completely rewritte
- …