35 research outputs found

    Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile

    Get PDF
    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain

    Ketamine induces a robust whole-brain connectivity pattern that can be differentially modulated by drugs of different mechanism and clinical profile

    Get PDF
    Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist, has been studied in relation to the glutamate hypothesis of schizophrenia and increases dissociation, positive and negative symptom ratings. Ketamine effects brain function through changes in brain activity; these activity patterns can be modulated by pre-treatment of compounds known to attenuate the effects of ketamine on glutamate release. Ketamine also has marked effects on brain connectivity; we predicted that these changes would also be modulated by compounds known to attenuate glutamate release. Here, we perform task-free pharmacological magnetic resonance imaging (phMRI) to investigate the functional connectivity effects of ketamine in the brain and the potential modulation of these effects by pre-treatment of the compounds lamotrigine and risperidone, compounds hypothesised to differentially modulate glutamate release. Connectivity patterns were assessed by combining windowing, graph theory and multivariate Gaussian process classification. We demonstrate that ketamine has a robust effect on the functional connectivity of the human brain compared to saline (87.5 % accuracy). Ketamine produced a shift from a cortically centred, to a subcortically centred pattern of connections. This effect is strongly modulated by pre-treatment with risperidone (81.25 %) but not lamotrigine (43.75 %). Based on the differential effect of these compounds on ketamine response, we suggest the observed connectivity effects are primarily due to NMDAR blockade rather than downstream glutamatergic effects. The connectivity changes contrast with amplitude of response for which no differential effect between pre-treatments was detected, highlighting the necessity of these techniques in forming an informed view of the mechanistic effects of pharmacological compounds in the human brain

    A systematic review of (semi-)automatic quality control of T1-weighted MRI scans

    Get PDF
    Purpose: Artifacts in magnetic resonance imaging (MRI) scans degrade image quality and thus negatively affect the outcome measures of clinical and research scanning. Considering the time-consuming and subjective nature of visual quality control (QC), multiple (semi-)automatic QC algorithms have been developed. This systematic review presents an overview of the available (semi-)automatic QC algorithms and software packages designed for raw, structural T1-weighted (T1w) MRI datasets. The objective of this review was to identify the differences among these algorithms in terms of their features of interest, performance, and benchmarks. Methods: We queried PubMed, EMBASE (Ovid), and Web of Science databases on the fifth of January 2023, and cross-checked reference lists of retrieved papers. Bias assessment was performed using PROBAST (Prediction model Risk Of Bias ASsessment Tool).// Results: A total of 18 distinct algorithms were identified, demonstrating significant variations in methods, features, datasets, and benchmarks. The algorithms were categorized into rule-based, classical machine learning-based, and deep learning-based approaches. Numerous unique features were defined, which can be roughly divided into features capturing entropy, contrast, and normative measures.// Conclusion: Due to dataset-specific optimization, it is challenging to draw broad conclusions about comparative performance. Additionally, large variations exist in the used datasets and benchmarks, further hindering direct algorithm comparison. The findings emphasize the need for standardization and comparative studies for advancing QC in MR imaging. Efforts should focus on identifying a dataset-independent measure as well as algorithm-independent methods for assessing the relative performance of different approaches

    Instability of default mode network connectivity in major depression:a two-sample confirmation study

    Get PDF
    Major depression is associated with altered static functional connectivity in various brain networks, particularly the default mode network (DMN). Dynamic functional connectivity is a novel tool with little application in affective disorders to date, and holds the potential to unravel fluctuations in connectivity strength over time in major depression. We assessed stability of connectivity in major depression between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC), key nodes in the DMN that are implicated in ruminative cognitions. Functional connectivity stability between the mPFC and PCC over the course of a resting-state functional magnetic resonance imaging (fMRI) scan was compared between medication-free patients with major depression and healthy controls matched for age, sex and handedness. We tested replicability of the results in an independent sample using multi-echo resting-state fMRI. The primary sample included 20 patients and 19 controls, while the validation sample included 19 patients and 19 controls. Greater connectivity variability was detected in major depression between mPFC and PCC. This was demonstrated in both samples indicating that the results were reliable and were not influenced by the fMRI acquisition approach used. Our results demonstrate that alterations within the DMN in major depression go beyond changes in connectivity strength and extend to reduced connectivity stability within key DMN regions. Findings were robustly replicated across two independent samples. Further research is necessary to better understand the nature of these fluctuations in connectivity and their relationship to the aetiology of major depression
    corecore