2,382 research outputs found

    McLaren's Improved Snub Cube and Other New Spherical Designs in Three Dimensions

    Full text link
    Evidence is presented to suggest that, in three dimensions, spherical 6-designs with N points exist for N=24, 26, >= 28; 7-designs for N=24, 30, 32, 34, >= 36; 8-designs for N=36, 40, 42, >= 44; 9-designs for N=48, 50, 52, >= 54; 10-designs for N=60, 62, >= 64; 11-designs for N=70, 72, >= 74; and 12-designs for N=84, >= 86. The existence of some of these designs is established analytically, while others are given by very accurate numerical coordinates. The 24-point 7-design was first found by McLaren in 1963, and -- although not identified as such by McLaren -- consists of the vertices of an "improved" snub cube, obtained from Archimedes' regular snub cube (which is only a 3-design) by slightly shrinking each square face and expanding each triangular face. 5-designs with 23 and 25 points are presented which, taken together with earlier work of Reznick, show that 5-designs exist for N=12, 16, 18, 20, >= 22. It is conjectured, albeit with decreasing confidence for t >= 9, that these lists of t-designs are complete and that no others exist. One of the constructions gives a sequence of putative spherical t-designs with N= 12m points (m >= 2) where N = t^2/2 (1+o(1)) as t -> infinity.Comment: 16 pages, 1 figur

    The Primary Pretenders

    Full text link
    We call a composite number q such that there exists a positive integer b with b^p == b (mod q) a prime pretender to base b. The least prime pretender to base b is the primary pretender q_b. It is shown that there are only 132 distinct primary pretenders, and that q_b is a periodic function of b whose period is the 122-digit number 19568584333460072587245340037736278982017213829337604336734362- 294738647777395483196097971852999259921329236506842360439300.Comment: 7 page

    Nonintersecting Subspaces Based on Finite Alphabets

    Full text link
    Two subspaces of a vector space are here called ``nonintersecting'' if they meet only in the zero vector. The following problem arises in the design of noncoherent multiple-antenna communications systems. How many pairwise nonintersecting M_t-dimensional subspaces of an m-dimensional vector space V over a field F can be found, if the generator matrices for the subspaces may contain only symbols from a given finite alphabet A subseteq F? The most important case is when F is the field of complex numbers C; then M_t is the number of antennas. If A = F = GF(q) it is shown that the number of nonintersecting subspaces is at most (q^m-1)/(q^{M_t}-1), and that this bound can be attained if and only if m is divisible by M_t. Furthermore these subspaces remain nonintersecting when ``lifted'' to the complex field. Thus the finite field case is essentially completely solved. In the case when F = C only the case M_t=2 is considered. It is shown that if A is a PSK-configuration, consisting of the 2^r complex roots of unity, the number of nonintersecting planes is at least 2^{r(m-2)} and at most 2^{r(m-1)-1} (the lower bound may in fact be the best that can be achieved).Comment: 14 page

    Quantum Error Correction and Orthogonal Geometry

    Get PDF
    A group theoretic framework is introduced that simplifies the description of known quantum error-correcting codes and greatly facilitates the construction of new examples. Codes are given which map 3 qubits to 8 qubits correcting 1 error, 4 to 10 qubits correcting 1 error, 1 to 13 qubits correcting 2 errors, and 1 to 29 qubits correcting 5 errors.Comment: RevTex, 4 pages, no figures, submitted to Phys. Rev. Letters. We have changed the statement of Theorem 2 to correct it -- we now get worse rates than we previously claimed for our quantum codes. Minor changes have been made to the rest of the pape

    Quantum Error Correction via Codes over GF(4)

    Get PDF
    The problem of finding quantum error-correcting codes is transformed into the problem of finding additive codes over the field GF(4) which are self-orthogonal with respect to a certain trace inner product. Many new codes and new bounds are presented, as well as a table of upper and lower bounds on such codes of length up to 30 qubits.Comment: Latex, 46 pages. To appear in IEEE Transactions on Information Theory. Replaced Sept. 24, 1996, to correct a number of minor errors. Replaced Sept. 10, 1997. The second section has been completely rewritten, and should hopefully be much clearer. We have also added a new section discussing the developments of the past year. Finally, we again corrected a number of minor error

    A linear construction for certain Kerdock and Preparata codes

    Full text link
    The Nordstrom-Robinson, Kerdock, and (slightly modified) Pre\- parata codes are shown to be linear over \ZZ_4, the integers  mod  4\bmod~4. The Kerdock and Preparata codes are duals over \ZZ_4, and the Nordstrom-Robinson code is self-dual. All these codes are just extended cyclic codes over \ZZ_4. This provides a simple definition for these codes and explains why their Hamming weight distributions are dual to each other. First- and second-order Reed-Muller codes are also linear codes over \ZZ_4, but Hamming codes in general are not, nor is the Golay code.Comment: 5 page
    • …
    corecore