264 research outputs found
Damping of antiferromagnetic spin waves by valence fluctuations in the double layer perovskite YBaFe2O5
Inelastic neutron scattering experiments show that spin dynamics in the
charge ordered insulating ground state of the double-layer perovskite YBaFe2O5
is well described in terms of eg superexchange interactions. Above the Verwey
transition at TV = 308 K, t2g double exchange-type conduction within
antiferromagnetic FeO2--BaO--FeO2 double layers proceeds by an electron hopping
process that requires a spin flip of the five-fold coordinated Fe ions, costing
an energy 5S^2 of approximately 0.1 eV. The hopping process disrupts
near-neighbor spin correlations, leading to massive damping of zone-boundary
spin waves.Comment: RevTeX, 4 pages, 4 figures, submitted to Phys. Rev. Let
Local edge modes in doped cuprates with checkerboard polaronic heterogeneity
We study a periodic polaronic system, which exhibits a nanoscale superlattice
structure, as a model for hole-doped cuprates with checkerboard-like
heterogeneity, as has been observed recently by scanning tunneling microscopy
(STM). Within this model, the electronic and phononic excitations are
investigated by applying an unrestricted Hartree-Fock and a random phase
approximation (RPA) to a multiband Peierls-Hubbard Hamiltonian in two
dimensions
Mixed lattice and electronic states in high-temperature superconductors
Inelastic neutron scattering measurements are presented which show the abrupt
development of new oxygen lattice vibrations near the doping-induced
metal-insulator transition in La(2-x)Sr(x)CuO(4). A direct correlation is
established between these lattice modes and the electronic susceptibility (as
measured by photoemission) inferring that such modes mix strongly with charge
fluctuations. This electron-lattice coupling can be characterized as a
localized one-dimensional response of the lattice to short-ranged metallic
charge fluctuations.Comment: 4 pages, 3 postscript figures, RevTe
Low temperature heat capacity of Fe_{1-x}Ga_{x} alloys with large magneostriction
The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large
magnetostriction has been investigated. The data were analyzed in the standard
way using electron () and phonon () contributions. The
Debye temperature decreases approximately linearly with increasing
Ga concentration, consistent with previous resonant ultrasound measurements and
measured phonon dispersion curves. Calculations of from lattice
dynamical models and from measured elastic constants C_{11}, C_{12} and C_{44}
are in agreement with the measured data. The linear coefficient of electronic
specific heat remains relatively constant as the Ga concentration
increases, despite the fact that the magnetoelastic coupling increases. Band
structure calculations show that this is due to the compensation of majority
and minority spin states at the Fermi level.Comment: 14 pages, 6 figure
- …