1,188 research outputs found
Non-encapsulated thermo-liquid crystals for digital particle tracking thermography/velocimetry in microfluidics
The ever accelerating state of technology has powered an increasing interest in heat transfer solutions and process engineering innovations in the microfluidics domain. In order to carry out such developments, reliable heat transfer diagnostic techniques are necessary. Thermo-liquid crystal (TLC) thermography, in combination with particle image velocimetry, has been a widely accepted and commonly used technique for the simultaneous measurement and characterization of temperature and velocity fields in macroscopic fluid flows for several decades. However, low seeding density, volume illumination, and low TLC particle image quality at high magnifications present unsurpassed challenges to its application to three-dimensional flows with microscopic dimensions. In this work, a measurement technique to evaluate the color response of individual non-encapsulated TLC particles is presented. A Shirasu porous glass membrane emulsification approach was used to produce the non-encapsulated TLC particles with a narrow size distribution and a multi-variable calibration procedure, making use of all three RGB and HSI color components, as well as the proper orthogonally decomposed RGB components, was used to achieve unprecedented low uncertainty levels in the temperature estimation of individual particles, opening the door to simultaneous temperature and velocity tracking using 3D velocimetry techniques. © 2012 The Author(s)
Streaming flow by oscillating bubbles: Quantitative diagnostics via particle tracking velocimetry
Oscillating microbubbles can be used as microscopic agents. Using external acoustic fields they are able to set the surrounding fluid into motion, Erode surfaces and even to carry particles attached to their interfaces. Although the acoustic streaming flow that the bubble generates in its vicinity has been often observed, it has never been measured and quantitatively compared with the available theoretical models. The scarcity of quantitative data is partially due to the strong three-dimensional character of bubble-induced streaming flows, which demands advanced velocimetry techniques. In this work, we present quantitative measurements of the flow generated by single and pairs of acoustically excited sessile microbubbles using a three-dimensional particle tracking technique. Using this novel experimental approach we are able to obtain the bubble's resonant oscillating frequency, study the boundaries of the linear oscillation regime, give predictions on the flow strength and the shear in the surrounding surface and study the flow and the stability of a two-bubble system. Our results show that velocimetry techniques are a suitable tool to make diagnostics on the dynamics of acoustically excited microbubbles
Contact Discontinuities in Models of Contact Binaries Undergoing Thermal Relaxation Oscillations
In this paper we pursue the suggestion by Shu, Lubow & Anderson (1979) and
Wang (1995) that contact discontinuity (DSC) may exist in the secondary in the
expansion TRO (thermal relaxation oscillation) state. It is demonstrated that
there is a mass exchange instability in some range of mass ratio for the two
components. We show that the assumption of {\it constant} volume of the
secondary should be relaxed in DSC model. For {\it all} mass ratio the
secondary alway satisfies the condition that no mass flow returns to the
primary through the inner Lagrangian point. The secondary will expand in order
to equilibrate the interaction between the common convective envelope and the
secondary. The contact discontinuity in contact binary undergoing thermal
relaxation does not violate the second law of thermodynamics. The maintaining
condition of contact discontinuity is derived in the time-dependent model. It
is desired to improve the TRO model with the advanced contact discontinuity
layer in future detailed calculations.Comment: 5 pages in emulateapj, 1 figur
A synoptic view of solar transient evolution in the inner heliosphere using the Heliospheric Imagers on STEREO
By exploiting data from the STEREO/heliospheric imagers (HI) we extend a well-established technique developed for coronal analysis by producing time-elongation plots that reveal the nature of solar transient activity over a far more extensive region of the heliosphere than previously possible from coronagraph images. Despite the simplicity of these plots, their power in demonstrating how the plethora of ascending coronal features observed near the Sun evolve as they move antisunward is obvious. The time-elongation profile of a transient tracked by HI can, moreover, be used to establish its angle out of the plane-of-the-sky; an illustration of such analysis reveals coronal mass ejection material that can be clearly observed propagating out to distances beyond 1AU. This work confirms the value of the time-elongation format in identifying/characterising transient activity in the inner heliosphere, whilst also validating the ability of HI to continuously monitor solar ejecta out to and beyond 1A
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation
We describe a method to measure the magnetic field orientation of coronal
mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles,
Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are
produced by a radio source occulted by a moving flux rope depending on its
orientation. These curves are consistent with the Helios observations,
providing evidence for the flux-rope geometry of CMEs. Many background radio
sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope
that the magnetic field orientation and helicity of the flux rope can be
determined 2-3 days before it reaches Earth, which is of crucial importance for
space weather forecasting. An FR calculation based on global
magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows
that FR mapping can also resolve a CME geometry curved back to the Sun. We
discuss implementation of the method using data from the Mileura Widefield
Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.
Does fix the Electromagnetic Form Factor at ?
We show that the decay is a reliable
source of information for the electromagnetic form factor of the pion at
by using general arguments to estimate, or
rather, put upper bounds on, the background processes that could spoil this
extraction. We briefly comment on the significance of the resulting
.Comment: 10 pages revtex manuscript, one figure--not included, U. of MD PP
#94-00
Timelike form factors at high energy
The difference between the timelike and spacelike meson form factors is
analysed in the framework of perturbative QCD with Sudakov effects included. It
is found that integrable singularities appear but that the asymptotic behavior
is the same in the timelike and spacelike regions. The approach to asymptotia
is quite slow and a rather constant enhancement of the timelike value is
expected at measurable large . This is in agreement with the trend
shown by experimental data.Comment: 17 pages, report DAPNIA/SPhN 94 0
- …