223 research outputs found

    Parity Violation in Neutron Resonances in 107,109Ag

    Full text link
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag

    Optical-Model Description of Time-Reversal Violation

    Full text link
    A time-reversal-violating spin-correlation coefficient in the total cross section for polarized neutrons incident on a tensor rank-2 polarized target is calculated by assuming a time-reversal-noninvariant, parity-conserving ``five-fold" interaction in the neutron-nucleus optical potential. Results are presented for the system n+165Hon + {^{165}{\rm Ho}} for neutron incident energies covering the range 1--20 MeV. From existing experimental bounds, a strength of 2±102 \pm 10 keV is deduced for the real and imaginary parts of the five-fold term, which implies an upper bound of order 10410^{-4} on the relative TT-odd strength when compared to the central real optical potential.Comment: 11 pages (Revtex

    Parity Violation in 232Th Neutron Resonances Above 250 eV

    Get PDF
    The analysis of parity nonconservation (PNC) measurements performed on 232Th by the TRIPLE Collaboration has been extended to include the neutron energy range of 250 to 1900 eV. Below 250 eV all ten statistically significant parity violations have the same sign. However, at higher energies PNC effects of both signs were observed in the transmission of longitudinally polarized neutrons through a thick thorium target. Although the limited experimental energy resolution precluded analysis in terms of the longitudinal asymmetry, parity violations were observed and the cross section differences for positive and negative neutron helicities were obtained. For comparison, a similar analysis was performed on the data below 250 eV, for which longitudinal asymmetries were obtained previously. For energies below 250 eV, the p-wave neutron strength functions for the J=1/2 and J=3/2 states were extracted: S1/21=(1.68±0.61)×10-4 and S3/21=(0.75±0.18)×10-4. The data provide constraints on the properties of local doorway states proposed to explain the PNC sign effect in thorium

    Parity Violation in Neutron Resonances in 107,109Ag

    Get PDF
    Parity nonconservation (PNC) was studied in p-wave resonances in Ag by measuring the helicity dependence of the neutron total cross section. Transmission measurements on natural Ag were performed in the energy range 32 to 422 eV with the time-of-flight method at the Manuel Lujan Neutron Scattering Center at Los Alamos National Laboratory. A total of 15 p-wave neutron resonances were studied in 107Ag and ninep-wave resonances in 109Ag. Statistically significant asymmetries were observed for eight resonances in 107Ag and for four resonances in109Ag. An analysis treating the PNC matrix elements as random variables yields a weak spreading width of Γw=(2.67-1.21+2.65)×10-7 eV for107Ag and Γw=(1.30-0.74+2.49)×10-7 eV for 109Ag

    Search for Parity Violation in 93Nb Neutron Resonances

    Get PDF
    A new search has been performed for parity violation in the compound nuclear states of 94Nb by measuring the helicity dependence of the neutron total cross section. Transmission measurements on a thick niobium target were performed by the time-of-flight method at the Manuel Lujan Neutron Scattering Center with a longitudinally polarized neutron beam in the energy range 32 to 1000 eV. A total of 18 p-wave resonances in 93Nb were studied with none exhibiting a statistically significant parity-violating longitudinal asymmetry. An upper limit of 1.0×10-7 eV (95% confidence level) was obtained for the weak spreading widthΓw in 93Nb

    Parity Violation in Neutron Resonances in 115In

    Get PDF
    Parity nonconservation (PNC) was studied in p-wave resonances in indium by measuring the helicity dependence of the neutron total cross section in the neutron energy range 6.0–316 eV with the time-of-flight method at LANSCE. A total of 36 p-wave neutron resonances were studied in 115In, and statistically significant asymmetries were observed for nine cases. An analysis treating the PNC matrix elements as random variables yields a weak matrix element of M=(0.67-0.12+0.16) meV and a weak spreading width of Γw=(1.30-0.43+0.76)×10-7 eV

    Nutrient and carbonate chemistry patterns associated with Karenia brevis blooms in three West Florida Shelf estuaries 2020-2023

    Get PDF
    Ocean acidification (OA) driven by eutrophication, riverine discharge, and other threats from local population growth that affect the inorganic carbonate system is already affecting the eastern Gulf of Mexico. Long-term declines in pH of ~ -0.001 pH units yr-1 have been observed in many southwest Florida estuaries over the past few decades. Coastal and estuarine waters of southwest Florida experience high biomass harmful algal blooms (HABs) of the dinoflagellate Karenia brevis nearly every year; and these blooms have the potential to impact and be impacted by seasonal to interannual patterns of carbonate chemistry. Sampling was conducted seasonally along three estuarine transects (Tampa Bay, Charlotte Harbor, Caloosahatchee River) between May 2020 and May 2023 to obtain baseline measurements of carbonate chemistry prior to, during, and following K. brevis blooms. Conductivity, temperature and depth data and discrete water samples for K. brevis cell abundance, nutrients, and carbonate chemistry (total alkalinity, dissolved inorganic carbonate (DIC), pCO2, and pHT were evaluated to identify seasonal patterns and linkages among carbonate system variables, nutrients, and K. brevis blooms. Karenia brevis blooms were observed during six samplings, and highest pCO2 and lowest pHT was observed either during or after blooms in all three estuaries. Highest average pH and lowest pCO2 were observed in Tampa Bay. In all three estuaries, average DIC and pHT were higher and pCO2 was lower during dry seasons than wet seasons. There was strong influence of net community calcification (NCC) and net community production (NCP) on the carbonate system; and NCC : NCP ratios in Tampa Bay, Charlotte Harbor, and the Caloosahatchee River were 0.83, 0.93, and 1.02, respectively. Linear relationships between salinity and dissolved ammonium, phosphate, and nitrate indicate strong influence of freshwater inflow from river input and discharge events on nutrient concentrations. This study is a first step towards connecting observations of high biomass blooms like those caused by K. brevis and alterations of carbonate chemistry in Southwest Florida. Our study demonstrates the need for integrated monitoring to improve understanding of interactions among the carbonate system, HABs, water quality, and acidification over local to regional spatial scales and event to decadal time scales

    Renormalization of the P- and T-odd nuclear potentials by the strong interaction and enhancement of P-odd effective field

    Get PDF
    Approximate analytical formulas for the self-consistent renormalization of P,T-odd and P-odd weak nuclear potentials by the residual nucleon-nucleon strong interaction are derived. The contact spin-flip nucleon-nucleon interaction reduces the constant of the P,T-odd potential 1.5 times for the proton and 1.8 times for the neutron. Renormalization of the P-odd potential is caused by the velocity dependent spin-flip component of the strong interaction. In the standard variant of π+ρ\pi + \rho-exchange, the conventional strength values lead to anomalous enhancement of the P-odd potential. Moreover, the π\pi-meson exchange contribution seems to be large enough to generate an instability (pole) in the nuclear response to a weak potential.Comment: 5 pages, Revtex3, no figure
    corecore