10 research outputs found

    Virtual Topology Reconfiguration in Optical Networks by Means of Cognition: Evaluation and Experimental Validation

    No full text
    In optical networking, virtual topologies have been introduced mainly to provide service providers with logical connections equipped with a reserved amount of bandwidth, which can be exploited to interconnect their equipment at the edges of the transport infrastructure. Virtual topologies are thus basically an abstraction of the real substrate, created by means of a process called virtual topology design (VTD). VTD is a complex task, affected by many parameters and constraints, and among them current traffic conditions are very relevant. Indeed, it is possible that after a certain time a virtual topology becomes inappropriate to serve current traffic. In such cases, the virtual topology can be reconfigured by creating new lightpaths or modifying or deleting existing ones, thus possibly creating some service interruptions. In this paper a new virtual topology reconfiguration technique is presented. In this technique, a cognitive entity designs and reconfigures virtual topologies by exploiting traffic forecasting solutions and taking advantage of past history. Moreover, a new transition method is also proposed to reduce the impact of instable routing tables during the reconfiguration process. We demonstrate, by means of simulation, the advantages of the proposed methods, as they reduce both the operational costs and the resources in operation while maintaining low packet loss ratio. Furthermore, we validate the operation of the proposed solutions in an emulated testbed

    Cognitive, Heterogeneous and Reconfigurable Optical Networks: The CHRON Project

    No full text
    High degree of heterogeneity of future optical networks, stemming from provisioning of services with different quality-of-transmission requirements, and transmission links employing mixed modulation formats or switching techniques, will pose a challenge for the control and management of the network. The incorporation of cognitive techniques can help to optimize a network by employing mechanisms that can observe, act, learn and improve network performance, taking into account end-to-end goals. The EU project CHRON: Cognitive Heterogeneous Reconfigurable Optical Network proposes a strategy to efficiently control the network by implementing cognition. In this paper we present a survey of different techniques developed throughout the course of the project to apply cognition in future optical networks

    Functional recovery of secondary tropical forests

    No full text
    One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success

    Functional recovery of secondary tropical forests

    No full text
    One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here we present data on functional recovery, using community data on seven plant characteristics (traits) of 1016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits one can enhance understanding of the mechanisms of succession and assess ecosystem recovery

    How agrarian cooperatives fail: Lessons from 1970s Peru

    No full text
    corecore