9,761 research outputs found
Quantum Monte Carlo calculation of the energy band and quasiparticle effective mass of the two-dimensional Fermi fluid
We have used the diffusion quantum Monte Carlo method to calculate the energy
band of the two-dimensional homogeneous electron gas (HEG), and hence we have
obtained the quasiparticle effective mass and the occupied bandwidth. We find
that the effective mass in the paramagnetic HEG increases significantly when
the density is lowered, whereas it decreases in the fully ferromagnetic HEG.
Our calculations therefore support the conclusions of recent experimental
studies [Y.-W. Tan et al., Phys. Rev. Lett. 94, 016405 (2005); M. Padmanabhan
et al., Phys. Rev. Lett. 101, 026402 (2008); T. Gokmen et al., Phys. Rev. B 79,
195311 (2009)]. We compare our calculated effective masses with other
theoretical results and experimental measurements in the literature
Diffusion quantum Monte Carlo calculation of the quasiparticle effective mass of the two-dimensional homogeneous electron gas
The quasiparticle effective mass is a key quantity in the physics of electron
gases, describing the renormalization of the electron mass due to
electron-electron interactions. Two-dimensional electron gases are of
fundamental importance in semiconductor physics, and there have been numerous
experimental and theoretical attempts to determine the quasiparticle effective
mass in these systems. In this work we report quantum Monte Carlo results for
the quasiparticle effective mass of a two-dimensional homogeneous electron gas.
Our calculations differ from previous quantum Monte Carlo work in that much
smaller statistical error bars have been achieved, allowing for an improved
treatment of finite-size effects. In some cases we have also been able to use
larger system sizes than previous calculations
Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid
We have used the variational and diffusion quantum Monte Carlo methods to
calculate the energy, pair correlation function, static structure factor, and
momentum density of the ground state of the two-dimensional homogeneous
electron gas. We have used highly accurate Slater-Jastrow-backflow trial wave
functions and twist averaging to reduce finite-size effects where applicable.
We compare our results with others in the literature and construct a
local-density-approximation exchange-correlation functional for 2D systems
Gaussian quantum Monte Carlo methods for fermions
We introduce a new class of quantum Monte Carlo methods, based on a Gaussian
quantum operator representation of fermionic states. The methods enable
first-principles dynamical or equilibrium calculations in many-body Fermi
systems, and, combined with the existing Gaussian representation for bosons,
provide a unified method of simulating Bose-Fermi systems. As an application,
we calculate finite-temperature properties of the two dimensional Hubbard
model.Comment: 4 pages, 3 figures, Revised version has expanded discussion,
simplified mathematical presentation, and application to 2D Hubbard mode
Exciton-exciton interaction and biexciton formation in bilayer systems
We report quantum Monte Carlo calculations of biexciton binding energies in
ideal two-dimensional bilayer systems with isotropic electron and hole masses.
We have also calculated exciton-exciton interaction potentials, and pair
distribution functions for electrons and holes in bound biexcitons. Comparing
our data with results obtained in a recent study using a model exciton-exciton
potential [C. Schindler and R. Zimmermann, Phys. Rev. B \textbf{78}, 045313
(2008)], we find a somewhat larger range of layer separations at which
biexcitons are stable. We find that individual excitons retain their identity
in bound biexcitons for large layer separations.Comment: 7 pages, 11 figures, 2 table
A variance-minimization scheme for optimizing Jastrow factors
We describe a new scheme for optimizing many-electron trial wave functions by
minimizing the unreweighted variance of the energy using stochastic integration
and correlated-sampling techniques. The scheme is restricted to parameters that
are linear in the exponent of a Jastrow correlation factor, which are the most
important parameters in the wave functions we use. The scheme is highly
efficient and allows us to investigate the parameter space more closely than
has been possible before. We search for multiple minima of the variance in the
parameter space and compare the wave functions obtained using reweighted and
unreweighted variance minimization.Comment: 19 pages; 12 figure
Exciton and biexciton energies in bilayer systems
We report calculations of the energies of excitons and biexcitons in ideal
two-dimensional bilayer systems within the effective-mass approximation with
isotropic electron and hole masses. The exciton energies are obtained by a
simple numerical integration technique, while the biexciton energies are
obtained from diffusion quantum Monte Carlo calculations. The exciton binding
energy decays as the inverse of the separation of the layers, while the binding
energy of the biexciton with respect to dissociation into two separate excitons
decays exponentially
On the Classification of Residues of the Grassmannian
We study leading singularities of scattering amplitudes which are obtained as
residues of an integral over a Grassmannian manifold. We recursively do the
transformation from twistors to momentum twistors and obtain an iterative
formula for Yangian invariants that involves a succession of dualized twistor
variables. This turns out to be useful in addressing the problem of classifying
the residues of the Grassmannian. The iterative formula leads naturally to new
coordinates on the Grassmannian in terms of which both composite and
non-composite residues appear on an equal footing. We write down residue
theorems in these new variables and classify the independent residues for some
simple examples. These variables also explicitly exhibit the distinct solutions
one expects to find for a given set of vanishing minors from Schubert calculus.Comment: 20 page
Yangian symmetry of light-like Wilson loops
We show that a certain class of light-like Wilson loops exhibits a Yangian
symmetry at one loop, or equivalently, in an Abelian theory. The Wilson loops
we discuss are equivalent to one-loop MHV amplitudes in N=4 super Yang-Mills
theory in a certain kinematical regime. The fact that we find a Yangian
symmetry constraining their functional form can be thought of as the effect of
the original conformal symmetry associated to the scattering amplitudes in the
N=4 theory.Comment: 15 pages, 5 figure
- …