319 research outputs found

    On the Abundance of Holmium in the Sun

    Get PDF
    The abundance of holmium (Z = 67) in the Sun remains uncertain. The photospheric abundance, based on lines of Ho II, has been reported as +0.26 +/- 0.16 (on the usual scale where log(H) = 12.00), while the meteoretic value is +0.51 +/- 0.02. Cowan code calculations have been undertaken to improve the partition function for this ion by including important contributions from unobserved levels arising from the (4f^{11}6p + 4f^{10}(5d + 6s)^{2}) group. Based on 6994 computed energy levels, the partition function for Ho II is 67.41 for a temperature of 6000 K. This is approximately 1.5 times larger than the value derived from the 49 published levels. The new partition function alone leads to an increase in the solar abundance of Ho to log(Ho) = +0.43. This is within 0.08 dex of the meteoretic abundance. Support for this result has been obtained through LTE spectrum synthesis calculations of a previously unidentified weak line at 3416.38 A in the solar spectrum. Attributing the feature to Ho II, the observations may be fitted with log(Ho) = +0.53. This calculation assumes log(gf) = 0.25 and is uncertain by at least 0.1 dex.Comment: 16 pages, 4 figures, accepted for publication in Solar Physic

    Abundances in Przybylski's star

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74704/1/j.1365-8711.2000.03578.x.pd

    A Re-Evaluation of the Abundance of Lutetium in the Sun

    Full text link
    Lutetium is one of the few nonvolatile elements whose solar photospheric abundance departs significantly from that derived from CI chondrites. We have applied the Cowan code to compute new oscillator strengths for Luii, and have included a correction for core polarization. The results have been used in a synthesis of the solar spectrum in the vicinity of features at 3397.062 and 6221.72. We find that the majority of the absorption in the ultraviolet feature is due to NH, making it unsuitable for extracting a reliable lutetium abundance. Our best fit to the low-noise Jungfraujoch spectrum for the weak, nine-component hyperfine Luii line at λ 6221.87 yields an abundance of +0.06 on a scale where log(H) = 12.00. This value is within 0.07 dex of the meteoritic result (+0.13). (These figures reflect the note added in proof below.)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43714/1/11207_2004_Article_146254.pd

    Spinning particle in an external linearized gravitational wave field

    Full text link
    We study the interaction of a scalar and a spinning particle with a coherent linearized gravitational wave field treated as a classical spin two external field. The spin degrees of freedom of the spinning particle are described by skew-commuting variables. We derive the explicit expressions for the eigenfunctions and the Green's functions of the theory. The discussion is exact within the approximation of neglecting radiative corrections and we prove that the result is completely determined by the semiclassical contribution.Comment: 11 page

    Lessons from Love-Locks: The archaeology of a contemporary assemblage

    Get PDF
    This document is the Accepted Manuscript version. The final, definitive version of this paper has been published in Journal of Material Culture, November 2017, published by SAGE Publishing, All rights reserved.Loss of context is a challenge, if not the bane, of the ritual archaeologist’s craft. Those who research ritual frequently encounter difficulties in the interpretation of its often tantalisingly incomplete material record. Careful analysis of material remains may afford us glimpses into past ritual activity, but our often vast chronological separation from the ritual practitioners themselves prevent us from seeing the whole picture. The archaeologist engaging with structured deposits, for instance, is often forced to study ritual assemblages post-accumulation. Many nuances of its formation, therefore, may be lost in interpretation. This paper considers what insights an archaeologist could gain into the place, people, pace, and purpose of deposition by recording an accumulation of structured deposits during its formation, rather than after. To answer this, the paper will focus on a contemporary depositional practice: the love-lock. This custom involves the inscribing of names/initials onto a padlock, its attachment to a bridge or other public structure, and the deposition of the corresponding key into the water below; a ritual often enacted by a couple as a statement of their romantic commitment. Drawing on empirical data from a three-year diachronic site-specific investigation into a love-lock bridge in Manchester, UK, the author demonstrates the value of contemporary archaeology in engaging with the often enigmatic material culture of ritual accumulations.Peer reviewe

    An Atlas of K-line Spectra for Cool Magnetic CP Stars: The Wing-Nib Anomaly (WNA)

    Full text link
    We present a short atlas illustrating the unusual Ca {\sc ii} K-line profiles in upper main sequence stars with anomalous abundances. Slopes of the profiles for 10 cool, magnetic chemically peculiar (CP) stars change abruptly at the very core, forming a deep "nib." The nibs show the same or nearly the same radial velocity as the other atomic lines. The near wings are generally more shallow than in normal stars. In three magnetic CP stars, the K-lines are too weak to show this shape, though the nibs themselves are arguably present. The Ca {\sc ii} H-lines also show deep nibs, but the profiles are complicated by the nearby, strong Hϵ\epsilon absorption. The K-line structure is nearly unchanged with phase in β\beta CrB and α\alpha Cir. Calculations, including NLTE, show that other possibilities in addition to chemical stratification may yield nib-like cores.Comment: 6 pages, 2 figures, and 8 figures; accepted for publication in ApJ

    Reverberation Mapping Results for Five Seyfert 1 Galaxies

    Full text link
    We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140-day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C120, Mrk 6, and PG2130+099, from which we have measured the time lag between variations in the 5100 Angstrom continuum and the H-beta broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of MBH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.Comment: 45 pages, 5 figures. Accepted for publication in ApJ. For a brief video explaining the key results of this paper, see http://www.youtube.com/user/OSUAstronom

    Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469

    Full text link
    A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.Comment: 9 Pages, 7 figures, 6 tables. Accepted for publication in The Astrophysical Journa
    • …
    corecore