1,371 research outputs found
Analyticity and Integrabiity in the Chiral Potts Model
We study the perturbation theory for the general non-integrable chiral Potts
model depending on two chiral angles and a strength parameter and show how the
analyticity of the ground state energy and correlation functions dramatically
increases when the angles and the strength parameter satisfy the integrability
condition. We further specialize to the superintegrable case and verify that a
sum rule is obeyed.Comment: 31 pages in harvmac including 9 tables, several misprints eliminate
Bethe Ansatz Equations for the Broken -Symmetric Model
We obtain the Bethe Ansatz equations for the broken -symmetric
model by constructing a functional relation of the transfer matrix of
-operators. This model is an elliptic off-critical extension of the
Fateev-Zamolodchikov model. We calculate the free energy of this model on the
basis of the string hypothesis.Comment: 43 pages, latex, 11 figure
Completeness of the Bethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms
A Bethe Ansatz solution of the open spin-1/2 XXZ quantum spin chain with
nondiagonal boundary terms has recently been proposed. Using a numerical
procedure developed by McCoy et al., we find significant evidence that this
solution can yield the complete set of eigenvalues for generic values of the
bulk and boundary parameters satisfying one linear relation. Moreover, our
results suggest that this solution is practical for investigating the ground
state of this model in the thermodynamic limit.Comment: 15 pages, LaTeX; amssymb, amsmath, no figures, 5 tables; v2 contains
an additional footnote and a "Note Added"; v3 contains an Addendu
Asymmetric XXZ chain at the antiferromagnetic transition: Spectra and partition functions
The Bethe ansatz equation is solved to obtain analytically the leading
finite-size correction of the spectra of the asymmetric XXZ chain and the
accompanying isotropic 6-vertex model near the antiferromagnetic phase boundary
at zero vertical field. The energy gaps scale with size as and
its amplitudes are obtained in terms of level-dependent scaling functions.
Exactly on the phase boundary, the amplitudes are proportional to a sum of
square-root of integers and an anomaly term. By summing over all low-lying
levels, the partition functions are obtained explicitly. Similar analysis is
performed also at the phase boundary of zero horizontal field in which case the
energy gaps scale as . The partition functions for this case are found
to be that of a nonrelativistic free fermion system. From symmetry of the
lattice model under rotation, several identities between the partition
functions are found. The scaling at zero vertical field is
interpreted as a feature arising from viewing the Pokrovsky-Talapov transition
with the space and time coordinates interchanged.Comment: Minor corrections only. 18 pages in RevTex, 2 PS figure
Optimal control of circuit quantum electrodynamics in one and two dimensions
Optimal control can be used to significantly improve multi-qubit gates in
quantum information processing hardware architectures based on superconducting
circuit quantum electrodynamics. We apply this approach not only to dispersive
gates of two qubits inside a cavity, but, more generally, to architectures
based on two-dimensional arrays of cavities and qubits. For high-fidelity gate
operations, simultaneous evolutions of controls and couplings in the two
coupling dimensions of cavity grids are shown to be significantly faster than
conventional sequential implementations. Even under experimentally realistic
conditions speedups by a factor of three can be gained. The methods immediately
scale to large grids and indirect gates between arbitrary pairs of qubits on
the grid. They are anticipated to be paradigmatic for 2D arrays and lattices of
controllable qubits.Comment: Published version
Thermodynamics of the 3-State Potts Spin Chain
We demonstrate the relation of the infrared anomaly of conformal field theory
with entropy considerations of finite temperature thermodynamics for the
3-state Potts chain. We compute the free energy and compute the low temperature
specific heat for both the ferromagnetic and anti-ferromagnetic spin chains,
and find the central charges for both.Comment: 18 pages, LaTex. Preprint # ITP-SB-92-60. References added and first
section expande
sl(N) Onsager's Algebra and Integrability
We define an analog of Onsager's Algebra through a finite set of
relations that generalize the Dolan Grady defining relations for the original
Onsager's Algebra. This infinite-dimensional Lie Algebra is shown to be
isomorphic to a fixed point subalgebra of Loop Algebra with respect
to a certain involution. As the consequence of the generalized Dolan Grady
relations a Hamiltonian linear in the generators of Onsager's Algebra
is shown to posses an infinite number of mutually commuting integrals of
motion
- …