4,157 research outputs found

    Some genus 3 curves with many points

    Full text link
    Using an explicit family of plane quartic curves, we prove the existence of a genus 3 curve over any finite field of characteristic 3 whose number of rational points stays within a fixed distance from the Hasse-Weil-Serre upper bound. We also provide an intrinsic characterization of so-called Legendre elliptic curves

    Constraining the properties of neutron star crusts with the transient low-mass X-ray binary Aql X-1

    Get PDF
    Aql X-1 is a prolific transient neutron star low-mass X-ray binary that exhibits an accretion outburst approximately once every year. Whether the thermal X-rays detected in intervening quiescent episodes are the result of cooling of the neutron star or due to continued low-level accretion remains unclear. In this work we use Swift data obtained after the long and bright 2011 and 2013 outbursts, as well as the short and faint 2015 outburst, to investigate the hypothesis that cooling of the accretion-heated neutron star crust dominates the quiescent thermal emission in Aql X-1. We demonstrate that the X-ray light curves and measured neutron star surface temperatures are consistent with the expectations of the crust cooling paradigm. By using a thermal evolution code, we find that ~1.2-3.2 MeV/nucleon of shallow heat release describes the observational data well, depending on the assumed mass-accretion rate and temperature of the stellar core. We find no evidence for varying strengths of this shallow heating after different outbursts, but this could be due to limitations of the data. We argue that monitoring Aql X-1 for up to ~1 year after future outbursts can be a powerful tool to break model degeneracies and solve open questions about the magnitude, depth and origin of shallow heating in neutron star crusts.Comment: 14 pages, 5 figures, 3 tables, accepted to MNRA

    Tannakian approach to linear differential algebraic groups

    Full text link
    Tannaka's Theorem states that a linear algebraic group G is determined by the category of finite dimensional G-modules and the forgetful functor. We extend this result to linear differential algebraic groups by introducing a category corresponding to their representations and show how this category determines such a group.Comment: 31 pages; corrected misprint

    Computing Hilbert Class Polynomials

    Get PDF
    We present and analyze two algorithms for computing the Hilbert class polynomial HDH_D . The first is a p-adic lifting algorithm for inert primes p in the order of discriminant D < 0. The second is an improved Chinese remainder algorithm which uses the class group action on CM-curves over finite fields. Our run time analysis gives tighter bounds for the complexity of all known algorithms for computing HDH_D, and we show that all methods have comparable run times

    Tidally Driven Processes Leading to Near-Field Turbulence in a Channel at the Crest of the Mendocino Escarpment*

    Get PDF
    In situ observations of tidally driven turbulence were obtained in a small channel that transects the crest of the Mendocino Ridge, a site of mixed (diurnal and semidiurnal) tides. Diurnal tides are subinertial at this latitude, and once per day a trapped tide leads to large flows through the channel giving rise to tidal excursion lengths comparable to the width of the ridge crest. During these times, energetic turbulence is observed in the channel, with overturns spanning almost half of the full water depth. A high-resolution, nonhydrostatic, 2.5-dimensional simulation is used to interpret the observations in terms of the advection of a breaking tidal lee wave that extends from the ridge crest to the surface and the subsequent development of a hydraulic jump on the flanks of the ridge. Modeled dissipation rates show that turbulence is strongest on the flanks of the ridge and that local dissipation accounts for 28% of the energy converted from the barotropic tide into baroclinic motion.United States. Office of Naval Research (Grant ONR N00014- 12-1-0943)National Science Foundation (U.S.). (Grant NSF OCE 1129763

    On representations of super coalgebras

    Full text link
    The general structure of the representation theory of a Z2Z_2-graded coalgebra is discussed. The result contains the structure of Fourier analysis on compact supergroups and quantisations thereof as a special case. The general linear supergroups serve as an explicit illustration and the simplest example is carried out in detail.Comment: 18 pages, LaTeX, KCL-TH-94-

    Archaeal abundance in post-mortem ruminal digesta may help predict methane emissions from beef cattle

    Get PDF
    The Rowett Institute of Nutrition and Health and SRUC are funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government. The project was supported by DEFRA and DA funded Agricultural Greenhouse Gas Inventory Research Platform. Our thanks are due to the excellent support staff at the SRUC Beef Research Centre, Edinburgh, also to Graham Horgan of BioSS, Aberdeen, for conducting multivariate analysis.Peer reviewedPublisher PD

    Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances

    Get PDF
    In recent years, two-dimensional (2D) semiconductor photocatalysts have been widely applied in water splitting, CO2 reduction, N2 fixation, as well as many other important photoreactions. Photocatalysts in the form of 2D nanosheet possess many inherent advantages over traditional 3D nanopowder photocatalysts, including improved light absorption characteristics, shorter electron and hole migration paths to the photocatalysts’ surface (thus minimizing undesirable electron-hole pair recombination), and abundant surface defects which allow band gap modulation and facilitate charge transfer from the semiconductor to adsorbates. When synergistically exploited and optimized, these advantages can impart 2D photocatalysts with remarkable activities relative to their 3D counterparts. Accordingly, a wide range of experimental approaches is now being explored for the synthesis of 2D photocatalysts, with computational methods increasingly being used for identification of promising new 2D photocatalytic materials. Herein, we critically review recent literatures related to 2D photocatalyst development and design. Particular emphasis is placed on 2D photocatalyst synthesis and the importance of computational studies for the fundamental understanding of 2D photocatalyst electronic structure, band gap structure, charge carrier mobility and reaction pathways. We also explore the practical challenges of using 2D photocatalysts, such as their difficulty to synthesize in large quantity and also their characterization. The overarching aim of this review is to provide a snapshot of recent work targeting high-performance 2D photocatalysts for efficient solar energy conversion, thus laying a firm base for future advancements in this rapidly expanding area of photocatalysis research

    A Light, Transmission and Scanning Electron Microscope Study of Snuff-Treated Hamster Cheek Pouch Epithelium

    Get PDF
    The effects of smokeless tobacco (snuff) on hamster cheek mucosa were studied by light microscopy, transmission (TEM) and scanning electron microscopy (SEM). Two grams of commercially available smokeless tobacco were placed into the blind end of the right cheek pouch of each experimental animal, once a day and five days a week for 24 months. The control animals did not receive smokeless tobacco. After 24 months treatment with smokeless tobacco, hamster cheek mucosal epithelium lost its translucency and had become whitish in color. By light microscopy hyperorthokeratosis, prominent granular cell layers with increased keratohyalin granules and hyperplasia were seen. At the ultrastructural level, wider intercellular spaces filled with microvilli, numerous shorter desmosomes, many thin tonofilament bundles, increased number of mitochondria, membrane coating granules and keratohyalin granules were seen in snuff-treated epithelium. The changes in the surface of the epithelium as seen by SEM were the development of an irregular arrangement of the microridges and the disappearance of the normal honeycomb pattern. The microridges were irregular, widened and surrounded the irregular elongated pits. Some smooth areas without microridges and pits were also seen. The long-term histological, TEM and SEM changes induced by smokeless tobacco treatment of the epithelium are well correlated with each other and were similar to those reported in human leukoplakia without dyskeratosis. They imply changes of pathological response resulting from topically applied snuff

    Pure Anderson Motives and Abelian \tau-Sheaves

    Full text link
    Pure t-motives were introduced by G. Anderson as higher dimensional generalizations of Drinfeld modules, and as the appropriate analogs of abelian varieties in the arithmetic of function fields. In order to construct moduli spaces for pure t-motives the second author has previously introduced the concept of abelian \tau-sheaf. In this article we clarify the relation between pure t-motives and abelian \tau-sheaves. We obtain an equivalence of the respective quasi-isogeny categories. Furthermore, we develop the elementary theory of both structures regarding morphisms, isogenies, Tate modules, and local shtukas. The later are the analogs of p-divisible groups.Comment: final version as it appears in Mathematische Zeitschrif
    • 

    corecore