574 research outputs found
Design and operation of a prototype interaction point beam collision feedback system for the International Linear Collider
A high-resolution, intratrain position feedback system has been developed to
achieve and maintain collisions at the proposed future electron-positron
International Linear Collider (ILC). A prototype has been commissioned and
tested with a beam in the extraction line of the Accelerator Test Facility at
the High Energy Accelerator Research Organization in Japan. It consists of a
stripline beam position monitor (BPM) with analogue signal-processing
electronics, a custom digital board to perform the feedback calculation, and a
stripline kicker driven by a high-current amplifier. The closed-loop feedback
latency is 148 ns. For a three-bunch train with 154 ns bunch spacing, the
feedback system has been used to stabilize the third bunch to 450 nm. The
kicker response is linear, and the feedback performance is maintained, over a
correction range of over 60 {\mu}m. The propagation of the correction has
been confirmed by using an independent stripline BPM located downstream of the
feedback system. The system has been demonstrated to meet the BPM resolution,
beam kick, and latency requirements for the ILC
Phenomenological description of the gamma* p cross section at low Q2
Low Q2 photon-proton cross sections are analysed using a simple,
QCD-motivated parametrisation ,
which gives a good description of the data. The Q2 dependence of the gamma* p
cross section is discussed in terms of the partonic transverse momenta of the
hadronic state the photon fluctuates into.Comment: 14 pages, revtex, epsfig, 2 figure
EFFECT OF CSR SHIELDING IN THE COMPACT LINEAR COLLIDER
Abstract The Drive Beam complex of the Compact Linear Collider must use short bunches with a large charge making beam transport susceptible to unwanted effects of Coherent Synchrotron Radiation emitted in the dipole magnets. We present the effects of transporting the beam within a limited aperture which decreases the magnitude of the CSR wake. The effect, known as CSR shielding, eases the design of key components of the facility
The AWAKE Run 2 Programme and beyond
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.info:eu-repo/semantics/publishedVersio
DEVELOPMENT OF A FAST MICRON-RESOLUTION BEAM POSITION MONITOR SIGNAL PROCESSOR FOR LINEAR COLLIDER BEAMBASED FEEDBACK SYSTEMS
We present the design of a prototype fast beam position monitor (BPM) signal processor for use in inter-bunch beam-based feedbacks for linear colliders and electron linacs. We describe the FONT4 intra-train beam-based digital position feedback system prototype deployed at the Accelerator test facility (ATF) extraction line at KEK, Japan. The system incorporates a fast analogue beam position monitor front-end signal processor, a digital feedback board, and a fast kicker-driver amplifier. The total feedback system latency is less than 150ns, of which less than 10ns is used for the BPM processor. We report preliminary results of beam tests using electron bunches separated by c. 150ns. Position resolution of order 1 micron was obtained
BEAM TEST RESULTS WITH THE FONT4 ILC PROTOTYPE INTRA-TRAIN BEAM FEEDBACK SYSTEM
We present the design and beam test results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end processor, FPGA-based digital signal processing board, and kicker drive amplifier have been designed, built, and tested on the extraction line of the KEK Accelerator Test Facility (ATF). The system was measured to have a latency of approximately 140 ns
Latest Beam Test Results of the FONT4 ILC Intra-train Feedback System Prototype
We present the design and preliminary results of a prototype beam-based
digital feedback system for the Interaction Point of the International Linear
Collider. A custom analogue front-end processor, FPGA-based digital signal
processing board, and kicker drive amplifier have been designed, built, and
tested on the extraction line of the KEK Accelerator Test Facility (ATF). The
system was measured to have a latency of approximately 140 ns.Comment: 4 pages, 6 figures, Proceedings of LCWS/ILC0
Soft Contributions to Hard Pion Photoproduction
Hard, or high transverse momentum, pion photoproduction can be a tool for
probing the parton structure of the beam and target. We estimate the soft
contributions to this process, with an eye toward delineating the region where
perturbatively calculable processes dominate. Our soft process estimate is
based on vector meson dominance and data based parameterizations of
semiexclusive hadronic cross sections. We find that soft processes dominate in
single pion photoproduction somewhat past 2 GeV transverse momentum at a few
times 10 GeV incoming energy. The recent polarization asymmetry data is
consistent with the perturbative asymmetry being diluted by polarization
insensitive soft processes. Determining the polarized gluon distribution using
hard pion photoproduction appears feasible with a few hundred GeV incoming
energy (in the target rest frame).Comment: 6 pages, 5 figure
Modelling chemistry in the nocturnal boundary layer above tropical rainforest and a generalised effective nocturnal ozone deposition velocity for sub-ppbv NOx conditions
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3 -NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx <1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ significantly if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following day’s peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate constants
Controlled growth of the self-modulation of a relativistic proton bunch in plasma
A long, narrow, relativistic charged particle bunch propagating in plasma is subject to the self-modulation (SM) instability. We show that SM of a proton bunch can be seeded by the wakefields driven by a preceding electron bunch. SM timing reproducibility and control are at the level of a small fraction of the modulation period. With this seeding method, we independently control the amplitude of the seed wakefields with the charge of the electron bunch and the growth rate of SM with the charge of the proton bunch. Seeding leads to larger growth of the wakefields than in the instability case.info:eu-repo/semantics/publishedVersio
- …