10 research outputs found

    Cuminum Cyminum Extract- A Green Corrosion Inhibitor of S300 Steel in 1 M HCl

    Get PDF
    The corrosion inhibition of steel S300 in 1M HCl by Extracts of Cuminum cyminum was investigated by using weight loss measurements, Potentiodynamic Polarization Curves and Electrochemical Impedance Spectroscopy (EIS). The polarization Curves reveal that extracts of C. cyminum is a mixed-type inhibitor. The results show that the inhibition efficiency increases with the increasing of extract concentration to reach 97.49 % at 1. 3 g/l and decreases with temperature. Cumin extract is adsorbed on the steel surface according Langmuir isotherm. The adsorption parameters, enthalpy and activation energy were determined. The effect of temperature was studied and discussed. Keywords: Cumin, steel, Corrosion, inhibition

    Synthesis, Electrochemical, Thermodynamic, and Quantum Chemical Investigations of Amino Cadalene as a Corrosion Inhibitor for Stainless Steel Type 321 in Sulfuric Acid 1M

    No full text
    The corrosion of stainless steel is one of the major industries’ issues that gained wide interest among researchers. It became necessary to develop and apply eco-friendly approaches to corrosion control. This work explores the inhibitory effect of a newly synthesized amino cadalene (ACM) on the corrosion of stainless steel type 321 in sulfuric acid 1M. Particularly, the experimental study consisting of electrochemical and surface analyses was conducted in conjunction with a theoretical approach. The electrochemical results showed that ACM acted as a mixed-type corrosion inhibitor and the inhibition efficiency attained 91% at 10−3M. EIS measurements revealed that both metal charge transfer and diffusion processes are involved in the interfacial metal/solution reactions. The interfacial mechanism is thoroughly investigated; the physisorption of the protonated molecules was preceded by the formation of a negative layer due to adsorption of the solution anionic species. The experimental insights are corroborated with the quantum chemical calculations

    Electrochemical Studies of Monoterpenic Thiosemicarbazones as Corrosion Inhibitor for Steel in 1 M HCl

    No full text
    We have studied the inhibitory effect of some Monoterpenic Thiosemicarbazones on steel corrosion in 1 M HCl solution. The potentiodynamic polarization and electrochemical impedance spectroscopy were used. The Monoterpenic Thiosemicarbazones have inhibited significantly the dissolution of steel. The inhibition efficiency increased with increasing inhibitor concentration and also with the increase in temperature (293–323 K). Furthermore, the results obtained revealed that the adsorption of inhibitor on steel surface obeys Langmuir adsorption model and the thermodynamic parameters such as enthalpy and activation energy were determined. The scanning electron microscopy combined with dispersive X-ray spectroscopy examinations were used to see the shape of the surface morphology and to determine the elemental composition. Scanning electron microscope (SEM) images show that the surface damage decreases when the inhibitor is added. The quantum chemical calculations using density functional theory (DFT) were performed in order to provide some insights into the electronic density distribution as well as the nature of inhibitor-steel interaction

    Fabrication of TiO2 Nanotube by Electrochemical Anodization: Toward Photocatalytic Application

    No full text
    In this study, a self-organized nanotubular titanium dioxide (TiO2) array was successfully produced by anodizing pure titanium in a mixture of glycerol, distilled water (8% vol.), and ammonium fluoride using a dual electrode system. The size control and distribution of the nanopores were performed in a DC voltage range varying from 30 V to 60 V. The diameter of TiO2 nanopores varies from 59 to 128 nm depending on the anodizing voltage. Energy-dispersive X-ray spectroscopy (EDX) analysis reveals that the as-prepared films are essentially composed of TiO2. According to the X-ray diffraction (XRD) and Raman spectroscopy analysis, the nanotubular arrays of TiO2 annealed at 600°C for 2 hours are composed of a phase mixture of anatase and rutile. Mott-Schottky analysis showed that the TiO2 nanotubes are consistent with an n-type semiconductor with a donor density of about 1017 cm-3. Preliminary results on the photocatalytic degradation of a pharmaceutical pollutant showed that the TiO2 nanotubes can be used as a promising material for application in wastewater treatment
    corecore