3,407 research outputs found
Recommended from our members
Doppler W-band polarization diversity space-borne radar simulator for wind studies
CloudSat observations are used in combination with collocated European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis to simulate spaceborne W-band Doppler observations from slant-looking
radars. The simulator also includes cross-polarization effects
which are relevant if the Doppler velocities are derived from
polarization diversity pulse pair correlation. A specific conically scanning radar configuration (WIVERN), recently proposed to the ESA-Earth Explorer 10 call that aims to provide
global in-cloud winds for data assimilation, is analysed in
detail in this study.
One hundred granules of CloudSat data are exploited to investigate the impact on Doppler velocity estimates from three
specific effects: (1) non-uniform beam filling, (2) wind shear
and (3) crosstalk between orthogonal polarization channels
induced by hydrometeors and surface targets. Errors associated with non-uniform beam filling constitute the most important source of error and can account for almost 1 m s−1
standard deviation, but this can be reduced effectively to less
than 0.5 m s−1 by adopting corrections based on estimates
of vertical reflectivity gradients. Wind-shear-induced errors
are generally much smaller (∼ 0.2 m s−1
). A methodology
for correcting these errors has been developed based on estimates of the vertical wind shear and the reflectivity gradient. Low signal-to-noise ratios lead to higher random errors
(especially in winds) and therefore the correction (particularly the one related to the wind-shear-induced error) is less
effective at low signal-to-noise ratio. Both errors can be underestimated in our model because the CloudSat data do not
fully sample the spatial variability of the reflectivity fields,
whereas the ECMWF reanalysis may have smoother velocity fields than in reality (e.g. they underestimate vertical wind
shear).
The simulator allows for quantification of the average
number of accurate measurements that could be gathered by
the Doppler radar for each polar orbit, which is strongly impacted by the selection of the polarization diversity H − V
pulse separation, Thv. For WIVERN a selection close to 20 µs
(with a corresponding folding velocity equal to 40 m s−1
)
seems to achieve the right balance between maximizing the
number of accurate wind measurements (exceeding 10 % of
the time at any particular level in the mid-troposphere) and
minimizing aliasing effects in the presence of high winds.
The study lays the foundation for future studies towards
a thorough assessment of the performance of polar orbiting
wide-swath W-band Doppler radars on a global scale. The
next generation of scanning cloud radar systems and reanalyses with improved resolution will enable a full capture of the
spatial variability of the cloud reflectivity and the in-cloud
wind fields, thus refining the results of this study
Recommended from our members
Estimating drizzle drop size and precipitation rate using two-colour lidar measurements
A method to estimate the size and liquid water content of drizzle drops using lidar measurements at two wavelengths is described. The method exploits the differential absorption of infrared light by liquid water at 905 nm and 1.5 μm, which leads to a different backscatter cross section for water drops larger than ≈50 μm. The ratio of backscatter measured from drizzle samples below cloud base at these two wavelengths (the colour ratio) provides a measure of the median volume drop diameter D0. This is a strong effect: for D0=200 μm, a colour ratio of ≈6 dB is predicted. Once D0 is known, the measured backscatter at 905 nm can be used to calculate the liquid water content (LWC) and other moments of the drizzle drop distribution.
The method is applied to observations of drizzle falling from stratocumulus and stratus clouds. High resolution (32 s, 36 m) profiles of D0, LWC and precipitation rate R are derived. The main sources of error in the technique are the need to assume a value for the dispersion parameter μ in the drop size spectrum (leading to at most a 35% error in R) and the influence of aerosol returns on the retrieval (≈10% error in R for the cases considered here). Radar reflectivities are also computed from the lidar data, and compared to independent measurements from a colocated cloud radar, offering independent validation of the derived drop size distributions
The Dearth of z~10 Galaxies in all HST Legacy Fields -- The Rapid Evolution of the Galaxy Population in the First 500 Myr
We present an analysis of all prime HST legacy fields spanning >800 arcmin^2
for the search of z~10 galaxy candidates and the study of their UV luminosity
function (LF). In particular, we present new z~10 candidates selected from the
full Hubble Frontier Field (HFF) dataset. Despite the addition of these new
fields, we find a low abundance of z~10 candidates with only 9 reliable sources
identified in all prime HST datasets that include the HUDF09/12, the HUDF/XDF,
all the CANDELS fields, and now the HFF survey. Based on this comprehensive
search, we find that the UV luminosity function decreases by one order of
magnitude from z~8 to z~10 at all luminosities over a four magnitude range.
This also implies a decrease of the cosmic star-formation rate density by an
order of magnitude within 170 Myr from z~8 to z~10. We show that this
accelerated evolution compared to lower redshift can entirely be explained by
the fast build-up of the dark matter halo mass function at z>8. Consequently,
the predicted UV LFs from several models of galaxy formation are in good
agreement with this observed trend, even though the measured UV LF lies at the
low end of model predictions. In particular, the number of only 9 observed
candidate galaxies is lower, by ~50%, than predicted by galaxy evolution
models. The difference is generally still consistent within the Poisson and
cosmic variance uncertainties. However, essentially all models predict larger
numbers than observed. We discuss the implications of these results in light of
the upcoming James Webb Space Telescope mission, which is poised to find much
larger samples of z~10 galaxies as well as their progenitors at less than 400
Myr after the Big Bang.Comment: 13 pages, 6 figures, minor updates to match accepted versio
Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields
We use all available fields with deep NICMOS imaging to search for J dropouts
(H<28) at z~10. Our primary data set for this search were the two J+H NICMOS
parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in
J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames
available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF.
The primary selection criterion was (J-H)>1.8. 11 such sources were found in
all search fields using this criterion. 8 of these were clearly ruled out as
credible z~10 sources, either as a result of detections (>2 sigma) blueward of
J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining
sources could not be determined from the data. The number appears consistent
with the expected contamination from low-z interlopers. Analysis of the stacked
images for the 3 candidates also suggests contamination. Regardless of their
true redshifts, the actual number of z~10 sources must be <=3. To assess the
significance of these results, two lower redshift samples (a z~3.8 B-dropout
and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size
scaling. They were added to the image frames, and the selection repeated,
giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit
of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from
z~6. This is consistent with the strong evolution already noted at z~6 and
z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at
z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10
(integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or
0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our
sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the
Astrophysical Journal Letter
Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation
Vertically pointing Doppler radar has been used to study the evolution of ice
particles as they sediment through a cirrus cloud. The measured Doppler fall
speeds, together with radar-derived estimates for the altitude of cloud top,
are used to estimate a characteristic fall time tc for the `average' ice
particle. The change in radar reflectivity Z is studied as a function of tc,
and is found to increase exponentially with fall time. We use the idea of
dynamically scaling particle size distributions to show that this behaviour
implies exponential growth of the average particle size, and argue that this
exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter
Inferring Fitness Effects from Time-Resolved Sequence Data with a Delay-Deterministic Model.
A common challenge arising from the observation of an evolutionary system over time is to infer the magnitude of selection acting upon a specific genetic variant, or variants, within the population. The inference of selection may be confounded by the effects of genetic drift in a system, leading to the development of inference procedures to account for these effects. However, recent work has suggested that deterministic models of evolution may be effective in capturing the effects of selection even under complex models of demography, suggesting the more general application of deterministic approaches to inference. Responding to this literature, we here note a case in which a deterministic model of evolution may give highly misleading inferences, resulting from the nondeterministic properties of mutation in a finite population. We propose an alternative approach that acts to correct for this error, and which we denote the delay-deterministic model. Applying our model to a simple evolutionary system, we demonstrate its performance in quantifying the extent of selection acting within that system. We further consider the application of our model to sequence data from an evolutionary experiment. We outline scenarios in which our model may produce improved results for the inference of selection, noting that such situations can be easily identified via the use of a regular deterministic model
Extremely Small Sizes for Faint z~2-8 Galaxies in the Hubble Frontier Fields: A Key Input For Establishing their Volume Density and UV Emissivity
We provide the first observational constraints on the sizes of the faintest
galaxies lensed by the Hubble Frontier Fields (HFF) clusters. Ionizing
radiation from faint galaxies likely drives cosmic reionization, and the HFF
initiative provides a key opportunity to find such galaxies. Yet, we cannot
really assess their ionizing emissivity without a robust measurement of their
sizes, since this is key to quantifying both their prevalence and the faint-end
slope to the UV luminosity function. Here we provide the first such size
constraints with 2 new techniques. The first utilizes the fact that the
detectability of highly-magnified galaxies as a function of shear is very
dependent on a galaxy's size. Only the most compact galaxies will remain
detectable in regions of high shear (vs. a larger detectable size range for low
shear), a phenomenon we carefully quantify using simulations. Remarkably,
however, no correlation is found between the surface density of faint galaxies
and the predicted shear, using 87 faint high-magnification mu>10 z~2-8 galaxies
seen behind the first 4 HFF clusters. This can only be the case if such faint
(~-15 mag) galaxies have significantly smaller sizes than luminous galaxies. We
constrain their half-light radii to be <~30 mas (<160-240 pc). As a 2nd size
probe, we rotate and stack 26 faint high-magnification sources along the major
shear axis. Less elongation is found than even for objects with an intrinsic
half-light radius of 10 mas. Together these results indicate that extremely
faint z~2-8 galaxies have near point-source profiles in the HFF dataset
(half-light radii conservatively <30 mas and likely 5-10 mas). These results
suggest smaller completeness corrections and hence much lower volume densities
for faint z~2-8 galaxies and shallower faint-end slopes than have been derived
in many recent studies (by factors of ~2-3 and by dalpha>~0.1-0.3).Comment: 19 pages, 15 figures, 3 tables, accepted for publication in Ap
Newly Discovered Bright z~9-10 Galaxies and Improved Constraints on Their Prevalence Using the Full CANDELS Area
We report the results of an expanded search for z~9-10 candidates over the
~883 arcmin^2 CANDELS+ERS fields. This study adds 147 arcmin^2 to the search
area we consider over the CANDELS COSMOS, UDS, and EGS fields, while expanding
our selection to include sources with bluer J_{125}-H_{160} colors than our
previous J_{125}-H_{160}>0.5 mag selection. In searching for new z~9-10
candidates, we make full use of all available HST, Spitzer/IRAC, and
ground-based imaging data. As a result of our expanded search and use of
broader color criteria, 3 new candidate z~9-10 galaxies are identified. We also
find again the z=8.683 source previously confirmed by Zitrin+2015. This brings
our sample of probable z~9-11 galaxy candidates over the CANDELS+ERS fields to
19 sources in total, equivalent to 1 candidate per 47 arcmin^2 (1 per 10
WFC3/IR fields). To be comprehensive, we also discuss 28 mostly lower
likelihood z~9-10 candidates, including some sources that seem to be reliably
at z>8 using the HST+IRAC data alone, but which the ground-based data show are
much more likely at z<4. One case example is a bright z~9.4 candidate COS910-8
which seems instead to be at z~2. Based on this expanded sample, we obtain a
more robust LF at z~9 and improved constraints on the volume density of bright
z~9 and z~10 galaxies. Our improved z~9-10 results again reinforce previous
findings for strong evolution in the UV LF at z>8, with a factor of ~10
evolution seen in the luminosity density from z~10 to z~8.Comment: 22 pages, 12 figures, 6 tables, accepted for publication in the
Astrophysical Journa
Distant red galaxies in the Hubble Ultra Deep Field
We take advantage of the Hubble Ultra Deep Field (UDF) data to study the
restframe optical and ultra violet (UV) morphologies of the novel population of
Distant Red Galaxies (DRGs). Six galaxies with J-Ks > 2.3 are found to Ks=21.5,
five of which have photometric redshifts z_phot > 2, corresponding to a surface
density of 0.9/arcmin^2. The surface brightness distributions of the z_phot > 2
galaxies are better represented by exponential disks than R^{1/4}-laws. Two of
the z_phot > 2 galaxies are extended, while three have compact morphologies.
The restframe optical morphology of the z_phot > 2 galaxies is quite different
from the restframe UV morphology: all the galaxies have red central components
which dominate in the NICMOS H_{160}-band images, and distinct off-center blue
features which show up in (and often dominate) the ACS images. The mean
measured effective radius of the z_phot > 2 galaxies is =1.9+/-1.4 kpc,
similar (within the errors) to the mean size of LBGs at similar redshifts. All
the DRGs are resolved in the ACS images, while four are resolved in the NICMOS
images. Two of the z_phot > 2 galaxies are bright X-ray sources and hence host
AGN. The diverse restframe optical and UV morphological properties of DRGs
derived here suggest that they have complex stellar populations, consisting of
both evolved populations that dominate the mass and the restframe optical
light, and younger populations, which show up as patches of star formation in
the restframe UV light; in many ways resembling the properties of normal local
galaxies. This interpretation is supported by fits to the broadband SEDs, which
for all five z_phot > 2 are best represented by models with extended star
formation histories and substantial amounts of dust.Comment: Accepted for publication in APJ
- …