507 research outputs found

    Analysis of ecopsychological types of interactions in medical institution environment

    Get PDF
    The study is based on the intersection of ecopsychological and subjective approaches and devoted to the research of psychological conditions for interaction of medical personnel in medical institution environmen

    First search for double-beta decay of 184Os and 192Os

    Full text link
    A search for double-beta decay of osmium has been realized for the first time with the help of an ultra-low background HPGe gamma detector at the underground Gran Sasso National Laboratories of the INFN (Italy). After 2741 h of data taking with a 173 g ultra-pure osmium sample limits on double-beta processes in 184Os have been established at the level of T_{1/2} about 10^{14}-10^{17} yr. Possible resonant double-electron captures in 184Os were searched for with a sensitivity T_{1/2} about 10^{16} yr. A half-life limit T_{1/2} > 5.3 10^{19} yr was set for the double-beta decay of 192Os to the first excited level of 192Pt. The radiopurity of the osmium sample has been investigated and radionuclides 137Cs, 185Os and 207Bi were detected in the sample, while activities of 40K, 60Co, 226Ra and 232Th were limited at the mBq/kg level.Comment: 12 pages, 7 figures, 2 table

    Search for 2\beta\ decays of 96Ru and 104Ru by ultra-low background HPGe gamma spectrometry at LNGS: final results

    Full text link
    An experiment to search for double beta decay processes in 96Ru and 104Ru, which are accompanied by gamma rays, has been realized in the underground Gran Sasso National Laboratories of the I.N.F.N. (Italy). Ruthenium samples with masses of about (0.5-0.7) kg were measured with the help of ultra-low background high purity Ge gamma ray spectrometry. After 2162 h of data taking the samples were deeply purified to reduce the internal contamination of 40K. The last part of the data has been accumulated over 5479 h. New improved half life limits on 2\beta+/\epsilon \beta+/2\epsilon\ processes in 96Ru have been established on the level of 10^{20} yr, in particular for decays to the ground state of 96Mo: T1/2(2\nu 2\beta+) > 1.4 10^{20} yr, T1/2(2\nu \epsilon\beta+) > 8.0 10^{19} yr and T1/2(0\nu 2K) > 1.0 10^{21} yr (all limits are at 90% C.L.). The resonant neutrinoless double electron captures to the 2700.2 keV and 2712.7 keV excited states of 96Mo are restricted as: T1/2(0\nu KL) > 2.0 10^{20} yr and T1/2(0\nu 2L) > 3.6 10^{20} yr, respectively. Various two neutrino and neutrinoless 2\beta\ half lives of 96Ru have been estimated in the framework of the QRPA approach. In addition, the T1/2 limit for 0\nu 2\beta- transitions of 104Ru to the first excited state of 104Pd has been set as > 6.5 10^{20} yr.Comment: 14 pages, 5 figures, 2 tables; version accepted for publication on Phys. Rev.

    Construction of bosonic string theory on infinitely curved Anti-de Sitter space

    Full text link
    Free scalar field theory in the sector with a large number of particles can be interpreted as bosonic string theory on anti-de Sitter space of vanishing radius. Different ways of writing the field theory Hamiltonian translate to different ways of reparametrizing the world-sheet sigma coordinate. Adding a mass term in the field theory corresponds to cutting off the warped AdS direction, with cut-off inversely proportional to the mass. The string theory has neither tachyon, nor critical dimension.Comment: 18 pages, latex, using revte

    Phase diagram for non-axisymmetric plasma balls

    Full text link
    Plasma balls and rings emerge as fluid holographic duals of black holes and black rings in the hydrodynamic/gravity correspondence for the Scherk-Schwarz AdS system. Recently, plasma balls spinning above a critical rotation were found to be unstable against m-lobed perturbations. In the phase diagram of stationary solutions the threshold of the instability signals a bifurcation to a new phase of non-axisymmetric configurations. We find explicitly this family of solutions and represent them in the phase diagram. We discuss the implications of our results for the gravitational system. Rotating non-axisymmetric black holes necessarily radiate gravitational waves. We thus emphasize that it would be important, albeit possibly out of present reach, to have a better understanding of the hydrodynamic description of gravitational waves and of the gravitational interaction between two bodies. We also argue that it might well be that a non-axisymmetric m-lobed instability is also present in Myers-Perry black holes for rotations below the recently found ultraspinning instability.Comment: 1+22 pages, 3 figures. v2: minor corrections and improvements, matches published versio

    Black Brane Viscosity and the Gregory-Laflamme Instability

    Full text link
    We study long wavelength perturbations of neutral black p-branes in asymptotically flat space and show that, as anticipated in the blackfold approach, solutions of the relativistic hydrodynamic equations for an effective p+1-dimensional fluid yield solutions to the vacuum Einstein equations in a derivative expansion. Going beyond the perfect fluid approximation, we compute the effective shear and bulk viscosities of the black brane. The values we obtain saturate generic bounds. Sound waves in the effective fluid are unstable, and have been previously related to the Gregory-Laflamme instability of black p-branes. By including the damping effect of the viscosity in the unstable sound waves, we obtain a remarkably good and simple approximation to the dispersion relation of the Gregory-Laflamme modes, whose accuracy increases with the number of transverse dimensions. We propose an exact limiting form as the number of dimensions tends to infinity.Comment: 16 pages, 3 figures. v2: minor corrections and refs adde

    From Petrov-Einstein to Navier-Stokes in Spatially Curved Spacetime

    Full text link
    We generalize the framework in arXiv:1104.5502 to the case that an embedding may have a nonvanishing intrinsic curvature. Directly employing the Brown-York stress tensor as the fundamental variables, we study the effect of finite perturbations of the extrinsic curvature while keeping the intrinsic metric fixed. We show that imposing a Petrov type I condition on the hypersurface geometry may reduce to the incompressible Navier-Stokes equation for a fluid moving in spatially curved spacetime in the near-horizon limit.Comment: 17 pages, references added, generalizing the metric form in part 3, version published in JHE

    Higher spin fermions in the BTZ black hole

    Full text link
    Recently it has been shown that the wave equations of bosonic higher spin fields in the BTZ background can be solved exactly. In this work we extend this analysis to fermionic higher spin fields. We solve the wave equations for arbitrary half-integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. These quasinormal modes are shown to agree precisely with the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We also obtain an expression for the 1-loop determinant in terms of the quasinormal modes and show it agrees with that obtained by integrating the heat kernel found by group theoretic methods.Comment: 29 page

    Higher spin quasinormal modes and one-loop determinants in the BTZ black hole

    Full text link
    We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.Comment: 47 page

    Hydrodynamics of fundamental matter

    Full text link
    First and second order transport coefficients are calculated for the strongly coupled N=4 SYM plasma coupled to massless fundamental matter in the Veneziano limit. The results, including among others the value of the bulk viscosity and some relaxation times, are presented at next-to-leading order in the flavor contribution. The bulk viscosity is found to saturate Buchel's bound. This result is also captured by an effective single-scalar five-dimensional holographic dual in the Chamblin-Reall class and it is suggested to hold, in the limit of small deformations, for generic plasmas with gravity duals, whenever the leading conformality breaking effects are driven by marginally (ir)relevant operators. This proposal is then extended to other relations for hydrodynamic coefficients, which are conjectured to be universal for every non-conformal plasma with a dual Chamblin-Reall-like description. Our analysis extends to any strongly coupled gauge theory describing the low energy dynamics of Nc>>1 D3-branes at the tip of a generic Calabi-Yau cone. The fundamental fields are added by means of 1<<Nf<<Nc homogeneously smeared D7-branes.Comment: 24 pages. V2: Important improvements in the discussion of the results in section 1. References adde
    corecore