126 research outputs found
Magnetism of small V clusters embedded in a Cu fcc matrix: an ab initio study
We present extensive first principles density functional theory (DFT)
calculations dedicated to analyze the magnetic and electronic properties of
small V clusters (n=1,2,3,4,5,6) embedded in a Cu fcc matrix. We consider
different cluster structures such as: i) a single V impurity, ii) several
V dimers having different interatomic distance and varying local atomic
environment, iii) V and iv) V clusters for which we assume compact
as well as 2- and 1-dimensional atomic configurations and finally, in the case
of the v) V and vi) V structures we consider a square pyramid and a
square bipyramid together with linear arrays, respectively. In all cases, the V
atoms are embedded as substitutional impurities in the Cu network. In general,
and as in the free standing case, we have found that the V clusters tend to
form compact atomic arrays within the cooper matrix. Our calculated non
spin-polarized density of states at the V sites shows a complex peaked
structure around the Fermi level that strongly changes as a function of both
the interatomic distance and local atomic environment, a result that
anticipates a non trivial magnetic behavior. In fact, our DFT calculations
reveal, in each one of our clusters systems, the existence of different
magnetic solutions (ferromagnetic, ferrimagnetic, and antiferromagnetic) with
very small energy differences among them, a result that could lead to the
existence of complex finite-temperature magnetic properties. Finally, we
compare our results with recent experimental measurements.Comment: 7 pages and 4 figure
The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen
Background: The facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen utilizes acyclic, monocyclic and bicyclic monoterpenes as sole carbon source under oxic as well as anoxic conditions. A biotransformation pathway of the acyclic beta-myrcene required linalool dehydratase-isomerase as initial enzyme acting on the hydrocarbon. An in-frame deletion mutant did not use myrcene, but was able to grow on monocyclic monoterpenes. The genome sequence and a comparative proteome analysis together with a random transposon mutagenesis were conducted to identify genes involved in the monocyclic monoterpene metabolism. Metabolites accumulating in cultures of transposon and in-frame deletion mutants disclosed the degradation pathway. Results: Castellaniella defragrans 65Phen oxidizes the monocyclic monoterpene limonene at the primary methyl group forming perillyl alcohol. The genome of 3.95 Mb contained a 70 kb genome island coding for over 50 proteins involved in the monoterpene metabolism. This island showed higher homology to genes of another monoterpene-mineralizing betaproteobacterium, Thauera terpenica 58Eu(T), than to genomes of the family Alcaligenaceae, which harbors the genus Castellaniella. A collection of 72 transposon mutants unable to grow on limonene contained 17 inactivated genes, with 46 mutants located in the two genes ctmAB (cyclic terpene metabolism). CtmA and ctmB were annotated as FAD-dependent oxidoreductases and clustered together with ctmE, a 2Fe-2S ferredoxin gene, and ctmF, coding for a NADH: ferredoxin oxidoreductase. Transposon mutants of ctmA, B or E did not grow aerobically or anaerobically on limonene, but on perillyl alcohol. The next steps in the pathway are catalyzed by the geraniol dehydrogenase GeoA and the geranial dehydrogenase GeoB, yielding perillic acid. Two transposon mutants had inactivated genes of the monoterpene ring cleavage (mrc) pathway. 2-Methylcitrate synthase and 2-methylcitrate dehydratase were also essential for the monoterpene metabolism but not for growth on acetate. Conclusions: The genome of Castellaniella defragrans 65Phen is related to other genomes of Alcaligenaceae, but contains a genomic island with genes of the monoterpene metabolism. Castellaniella defragrans 65Phen degrades limonene via a limonene dehydrogenase and the oxidation of perillyl alcohol. The initial oxidation at the primary methyl group is independent of molecular oxygen
Status of Schottky Diagnostics in the ANKA Storage Ring
The status of longitudinal and transverse Schottky observation systems for the synchrotron light source ANKA is presented. ANKA regularly operates in a dedicated low alpha mode with short bunches for the generation of coherent THz radiation. The Schottky measurement results are shown and compared with theoretical predictions for the regular as well as the different stages of the low alpha mode of operation. Special care had to be taken to control and mitigate the impact from strong coherent lines of the short bunches on the signal processing chain. The system setup is shown, expected and unexpected observations as well as applications are discussed
The CAT-ACT Beamline at ANKA : A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research
A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported
The CAT-ACT Beamline at ANKA: A new high energy X-ray spectroscopy facility for CATalysis and ACTinide research
A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported
Observation of Electron Clouds in the ANKA Undulator by Means of the Microwave Transmission Method
A superconducting undulator is installed in the ANKA electron storage ring. Electron clouds could potentially contribute to the heat load of this device. A microwave transmission type electron cloud diagnostic has been installed for the undulator section of the ANKA machine. We present the system layout with particular emphasis on the electron machine aspects. Hardware transfer function results and e-cloud data for different machine settings are discussed. Special care has been taken for front end filter design both on the microwave injection and pick-up side
Transverse and Longitudinal Profile Measurements at the KARA Booster Synchrotron
In the booster synchrotron of the Karlsruhe Research Accelerator (KARA), the beam is injected from the microtron at 53 MeV and ramped up to 500 MeV. Though the injected beam current from the microtron to the booster seems good, the injection efficiency into the booster is currently low due to various effects. Consequently, an upgrade of the whole beam diagnostics system is taking place in the booster, in order to improve the injection efficiency through understanding the loss mechanisms and the behavior of bunches. Among these diagnostics tools are beam loss monitors, a transverse profile monitor and a longitudinal profile monitor. In this paper, we will describe the setups used for bunch profile measurements in both transverse and longitudinal planes and report on first data analysis results
- …