4,009 research outputs found
Double-layer shocks in a magnetized quantum plasma
The formation of small but finite amplitude electrostatic shocks in the
propagation of quantum ion-acoustic waves (QIAWs) obliquely to an external
magnetic field is reported in a quantum electron-positron-ion (e-p-i) plasma.
Such shocks are seen to have double-layer (DL) structures composed of the
compressive and accompanying rarefactive slow-wave fronts. Existence of such DL
shocks depends critically on the quantum coupling parameter associated with
the Bohm potential and the positron to electron density ratio . The
profiles may, however, steepen initially and reach a steady state with a number
of solitary waves in front of the shocks. Such novel DL shocks could be a good
candidate for particle acceleration in intense laser-solid density plasma
interaction experiments as well as in compact astrophysical objects, e.g.,
magnetized white dwarfs.Comment: 4 pages, 1 figure (to appear in Physical Review E
Experimental evidence of delocalized states in random dimer superlattices
We study the electronic properties of GaAs-AlGaAs superlattices with
intentional correlated disorder by means of photoluminescence and vertical dc
resistance. The results are compared to those obtained in ordered and
uncorrelated disordered superlattices. We report the first experimental
evidence that spatial correlations inhibit localization of states in disordered
low-dimensional systems, as our previous theoretical calculations suggested, in
contrast to the earlier belief that all eigenstates are localized.Comment: 4 pages, 5 figures. Physical Review Letters (in press
S_3 and the L=1 Baryons in the Quark Model and the Chiral Quark Model
The S_3 symmetry corresponding to permuting the positions of the quarks
within a baryon allows us to study the 70-plet of L=1 baryons without an
explicit choice for the spatial part of the quark wave functions: given a set
of operators with definite transformation properties under the spin-flavor
group SU(3) x SU(2) and under this S_3, the masses of the baryons can be
expressed in terms of a small number of unknown parameters which are fit to the
observed L=1 baryon mass spectrum. This approach is applied to study both the
quark model and chiral constituent quark model. The latter theory leads to a
set of mass perturbations which more satisfactorily fits the observed L=1
baryon mass spectrum (though we can say nothing, within our approach, about the
physical reasonableness of the parameters in the fit). Predictions for the
mixing angles and the unobserved baryon masses are given for both models as
well as a discussion of specific baryons.Comment: 24 pages, requires picte
Influence of the single-particle Zeeman energy on the quantum Hall ferromagnet at high filling factors
In a recent paper [B. A. Piot et al., Phys. Rev. B 72, 245325 (2005)], we
have shown that the lifting of the electron spin degeneracy in the integer
quantum Hall effect at high filling factors should be interpreted as a
magnetic-field-induced Stoner transition. In this work, we extend the analysis
to investigate the influence of the single-particle Zeeman energy on the
quantum Hall ferromagnet at high filling factors. The single-particle Zeeman
energy is tuned through the application of an additional in-plane magnetic
field. Both the evolution of the spin polarization of the system and the
critical magnetic field for spin splitting are well described as a function of
the tilt angle of the sample in the magnetic field.Comment: Published in Phys. Rev.
- …
